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S U M M A R Y
We present a numerical algorithm for 3-D electromagnetic (EM) simulations in conduct-
ing media with general electric anisotropy. The algorithm is based on the finite-difference
discretization of frequency-domain Maxwell’s equations on a Lebedev grid, in which all com-
ponents of the electric field are collocated but half a spatial step staggered with respect to the
magnetic field components, which also are collocated. This leads to a system of linear equations
that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner.
We validate the accuracy of the numerical results for layered and 3-D tilted transverse isotropic
(TTI) earth models representing typical scenarios used in the marine controlled-source EM
method. It is then demonstrated that not taking into account the full anisotropy of the con-
ductivity tensor can lead to misleading inversion results. For synthetic data corresponding to
a 3-D model with a TTI anticlinal structure, a standard vertical transverse isotropic (VTI)
inversion is not able to image a resistor, while for a 3-D model with a TTI synclinal structure
it produces a false resistive anomaly. However, if the VTI forward solver used in the inversion
is replaced by the proposed TTI solver with perfect knowledge of the strike and dip of the
dipping structures, the resulting resistivity images become consistent with the true models.

Key words: Numerical solutions; Electrical anisotropy; Electromagnetic theory; Marine
electromagnetics.

I N T RO D U C T I O N

Marine controlled-source electromagnetic (CSEM) surveying is an
important technique for hydrocarbon exploration (Eidesmo et al.
2002; Ellingsrud et al. 2002; Constable 2010). The technique uses a
high-powered electric dipole source to probe subsurface resistivities
and has proven to be very useful for detecting resistive hydrocarbon
reservoirs, which often show up as anomalies in CSEM data and
in its inversion results (see e.g. Hesthammer et al. 2010; Fanavoll
et al. 2012; Alcocer et al. 2013).

A reliable inversion and interpretation of CSEM data in complex
tectonic environments with varying anisotropy remains one of the
major challenges in the hydrocarbon exploration industry. This is
primarily due to shortage of efficient 3-D forward modelling codes
that can accurately calculate the electric and magnetic fields in
complex anisotropic conductivity structures. In inversion and inter-
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pretation of industrial CSEM data, anisotropy of the Earth is either
ignored or (most often) simplified as vertical transverse isotropy
(VTI). The VTI assumption is only valid if the subsurface consists
of horizontal sedimentary layers having a vertical axis of sym-
metry. In complex tectonic settings, however, the subsurface may
have dipping sedimentary layers, which results in tilted transverse
isotropic (TTI) media with tilted axes of symmetry. For example,
typical geological structures necessary for hydrocarbon accumula-
tion such as an anticline, a syncline, an overthrust, or tilted layers
near salt domes could produce an effective TTI medium with a
large inclination of axis of symmetry. The simplified assumption
of VTI anisotropy in such complex tectonic areas may result in a
misleading interpretation of EM data. For example, Li & Dai (2011)
and later Davydycheva & Frenkel (2013) studied the effect of tilted
anisotropy on synthetic CSEM responses, respectively, for 2.5-D
and 3-D problems and concluded that ignoring such anisotropy in
CSEM data interpretation might be the core reason for some false-
negative and false-positive EM anomalies.

In order to get reliable inversion results in complex tectonic ar-
eas, key requirements are therefore to have an accurate anisotropic
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forward modelling algorithm as well as an inversion scheme that can
employ this modelling algorithm. In the past, some 3-D anisotropic
forward modelling algorithms have been developed, for example by
Weidelt (1999), Wang & Fang (2001), Weiss & Newman (2002),
Davydycheva et al. (2003) and Liu & Yin (2014). However, to our
knowledge, there have been no published reports on either CSEM
inversion schemes that can handle arbitrary anisotropy (or at least
TTI), or studies of the possible effect of TTI anisotropy on results
obtained by conventional inversion with VTI assumption. In this
paper, we develop a forward modelling algorithm for media with
general anisotropy and use this in an inversion scheme to perform
a comparative study of inversion results obtained with the VTI as-
sumption of the model anisotropy against those obtained with the
TTI assumption.

The finite-difference (FD) method is a commonly used approach
to simulate EM responses. In the FD method, the governing partial
differential equations (PDEs) are usually discretized on a staggered
Yee grid (Yee 1966); see for example the FD algorithms developed
by Newman & Alumbaugh (2002), Streich (2009) and Jaysaval et
al. (2015). These algorithms are based on a simplified assumption
stating that the anisotropic media can be described by only three
diagonal elements of the 3 × 3 conductivity tensors (e.g. VTI, hor-
izontal transverse isotropic [HTI], or triaxial anisotropic media).
In a standard Yee grid, the electric field components are located
at the middle of the cell edges, while the magnetic field compo-
nents are located at the centres of the cell faces, and no electric or
magnetic field component is collocated with any other field compo-
nent. The basic Yee approach suits well for the simple case of the
diagonal conductivity tensor, but it is not easily generalized to an
arbitrary anisotropic medium, which is described by 3 × 3 conduc-
tivity tensors with non-zero off-diagonal elements. In such media,
the anisotropic Ohm law relates each component of the current
density with all three components of the electric field. Therefore,
discretization of Maxwell’s equations requires values for all electric
field components at each electric field node of the FD grid.

In order to extend an FD algorithm based on the Yee grid to
handle an arbitrary anisotropic media, one can interpolate all electric
field components at each electric field node from their values on
neighbouring nodes; see for example Weidelt (1999), Wang & Fang
(2001), Weiss & Newman (2002) and Liu & Yin (2014). However,
such interpolation may result in a number of drawbacks as outlined
by Davydycheva et al. (2003) and Davydycheva & Frenkel (2010).
To list a few among these, the interpolation effectively doubles
the size of FD cell and can lead to loss of the current conservation
property in the grid cells: the ingoing and outgoing currents may not
be equal. Thus, the interpolation scheme can significantly reduce
the accuracy of the FD method. Besides, the inverse of a local
interpolation operator cannot be local, which can be troublesome,
for example, it will destroy the duality between the electric and
magnetic fields.

An alternative FD method for arbitrary anisotropic media is to
use the so-called Lebedev grid (Lebedev 1964). In this grid, all
electric field components are collocated at one set of nodes and all
magnetic field components are collocated at another set of nodes.
This ensures that there is no need for interpolation, and hence no
loss of the current conservation property in the grid cells. The
Lebedev-grid FD approach for EM modelling was implemented
in the frequency domain by Davydycheva & Druskin (1999) and
Davydycheva et al. (2003), and in the time domain by Nauta et
al. (2013). The Lebedev grid can be decomposed into four shifted
Yee grids. Consequently, the computation cost increases fourfold
as compared to the Yee grid. At the same time, as demonstrated by

Davydycheva et al. (2003) the Lebedev grid exhibits improved error
cancellation properties, and thus allows using coarser cell sizes.

The forward modelling using the FD discretization of frequency-
domain Maxwell’s equations, on either a Yee or a Lebedev grid,
leads to a system of linear equations. For realistic EM simulations,
the resulting linear system is sparse, but very large and may involve
up to several millions of unknowns. Such a linear system can be
efficiently solved using sparse direct solvers, see Streich (2009),
da Silva et al. (2012), Jaysaval et al. (2014) and Puzyrev & Koric
(2015), but they are very demanding in terms of memory and flops
requirements. Therefore, one often uses iterative solvers that are
computationally less demanding. The most frequently used group
of iterative solvers are based on Krylov subspace methods; see for
example Newman & Alumbaugh (1995), Smith (1996), Druskin
et al. (1999), Puzyrev et al. (2013), Börner et al. (2015) and the
references therein. The convergence of Krylov methods depends on
the condition number of the linear system: the smaller the condition
number, the faster the convergence. For EM applications, the system
may be poorly conditioned, and hence the use of Krylov methods
requires special preconditioners to accelerate the convergence (Saad
2003).

An efficient preconditioner can be obtained using multigrid meth-
ods (Wesseling 1991; Briggs et al. 2000; Trottenberg et al. 2001),
which are among the fastest iterative solution techniques known
today. For 3-D EM modelling, Aruliah & Ascher (2002) have pre-
sented a multigrid preconditioner for Krylov methods for the finite-
volume discretization of Maxwell’s equations. Mulder (2006) has
implemented a multigrid method as a standalone solver as well as a
preconditioner for Krylov methods for the finite-integration (FI) dis-
cretization of Maxwell’s equations. In both papers, the discretization
is based on the staggered Yee grid. Koldan et al. (2014) have recently
presented an algebraic multigrid preconditioner for Krylov solvers
for the finite-element (FE) implementation of Maxwell’s equations.
However, the multigrid methods have not yet been applied for linear
systems obtained from the discretization of Maxwell’s equations on
the Lebedev grid.

In this paper, we present a Lebedev-grid based FD modelling with
a multigrid preconditioner for simulating EM fields in arbitrary 3-
D anisotropic media. The resulting linear system is solved using
a Krylov subspace based preconditioned biconjugate-gradient-type
method, for example BiCGStab(2) (van der Vorst 1992; Gutknecht
1993). Computation of a multigrid preconditioner involves deter-
mination of a number of different components: a set of grids with
different degrees of coarseness, intergrid transfer operators and a
so-called smoother (Trottenberg et al. 2001). All these components
have been implemented for the Lebedev grid, following the similar
ideas as in Mulder’s (2006) implementation for the Yee grid. The
smoother is based on the method introduced by Arnold et al. (2000),
who locally solved small linear systems at nodes of the grid cells.
This smoother takes care of the large null-space of the 3-D curl-curl
operator, and hence avoids the requirement of an explicit divergence
correction as proposed by Smith (1996).

The developed forward solver for 3-D media with general
anisotropy is then used to demonstrate that assuming a simpli-
fied VTI anisotropy in inversion and interpretation of industrial
CSEM data can lead to erroneous conclusions. For this, a syn-
thetic inversion study is performed by considering 3-D resistivity
models with anticlinal and synclinal structures from Davydycheva
& Frenkel (2013). We first present inverted resistivity images ob-
tained by a VTI inversion, which uses a forward solver assuming a
VTI anisotropy, and show that the simplified VTI assumption can
lead to misleading inversion results. We then replace the VTI solver
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by the proposed forward solver that can handle TTI anisotropy of
the models, and obtain resistivity images that are consistent with
the true resistivity models.

The paper is divided into four main sections. We first describe the
EM modelling in general 3-D anisotropic media. We provide details
of the FD discretization of the governing PDEs on the Lebedev grid.
This is followed by the theory and implementation of the multigrid
method, which we use as a preconditioner to a BiCGStab(2) solver.
We subsequently benchmark our numerical results using layered
(1-D) and 3-D TTI earth models. Finally, we examine the effect
of tilted anisotropy on synthetic inversion results before drawing
concluding remarks.

A N I S O T RO P I C F D E M M O D E L L I N G

Assuming a temporal-dependence of e−iωt with the angular fre-
quency ω, a vector Helmholtz equation for the electric field can be
derived from Maxwell’s equations in the quasi-static limit. Follow-
ing Jaysaval et al. (2014, 2015), we have

∇ × ∇ × E (r) − iωμσ̄ (r)E (r) = iωμJ (r) . (1)

Here r ≡ x x̂ + yŷ + zẑ is the position vector, E ≡ Ex x̂ + Ey ŷ +
Ez ẑ and H ≡ Hx x̂ + Hy ŷ + Hz ẑ are, respectively, the electric and
magnetic field vectors, J ≡ Jx x̂ + Jy ŷ + Jz ẑ is the electric current
density vector of a transmitter, and μ is the magnetic permeability.
The value of μ is assumed to be constant and equal to the free space
value μ0 = 4π × 10−7Hm−1. The term σ̄E is the Ohmic conduc-
tion term and describes induced current density in the conductive
Earth. σ̄ (r) is a symmetric 3 × 3 electric conductivity tensor and
takes the form

σ̄ =

⎡
⎢⎢⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎥⎥⎦ (2)

in an arbitrary anisotropic medium, where the elements of σ̄ re-
late the components of the current density and electric field such
that Jx = σxx Ex + σxy Ey + σxz Ez , and similarly for Jy and Jz . For
brevity, hereinafter the dependency on the position vector r is omit-
ted. The off-diagonal elements of σ̄ are zero for isotropic, VTI, HTI
or triaxial anisotropic medium.

Using the definition of the curl operator in eq. (1), we obtain

∂y∂x Ey − ∂2
y Ex − ∂2

z Ex + ∂z∂x Ez

−iωμ0

{
σxx Ex + σxy Ey + σxz Ez

} = iωμ0 Jx , (3)

∂z∂y Ez − ∂2
z Ey − ∂2

x Ey + ∂x∂y Ex

−iωμ0

{
σyx Ex + σyy Ey + σyz Ez

} = iωμ0 Jy, (4)

∂x∂z Ex − ∂2
x Ez − ∂2

y Ez + ∂y∂z Ey

−iωμ0

{
σzx Ex + σzy Ey + σzz Ez

} = iωμ0 Jz, (5)

in a global x-y-z coordinate system that does not necessarily coin-
cide with the principal-axis coordinate system of the medium.

PDEs (3)–(5) form the basis for our anisotropic frequency-
domain CSEM modelling. The boundaries of the computational
domain are assumed to be located sufficiently far away from the
transmitter for the EM fields to have negligible values. Hence, we

apply homogeneous Dirichlet boundary conditions by setting the
EM field values to zero at the outermost boundaries of the FD
mesh.

Lebedev grid discretization and system matrix

The unknown fields E and H are determined by the method of
FDs on a Lebedev grid (Lebedev 1964). In this grid, all compo-
nents of the electric field are collocated, but half a spatial step
staggered by the collocated magnetic field components. To con-
struct a Lebedev grid, we consider a tensor-product Cartesian grid
defined by a set of Nx , Ny and Nz cells, respectively, in the x-,
y- and z-directions. Let an indicial notation (xi ′ , y j ′ , zk′ ) repre-
sent a point r ≡ xi ′ x̂ + y j ′ ŷ + zk′ ẑ on this Cartesian grid, where
the primed-subscripts take both integer (i.e. 1, 2, . . . ) and half-
integer (i.e. 1 + 1/2, 2 + 1/2, . . . ) values. We assign all compo-
nents of E to nodes for which i ′ + j ′ + k ′ is half-integer and all
components of H to nodes where the sum is integer. Consider a
cell with top left corner node (xi , y j , zk) where all subscripts are
integer, then all components of E are located at (xi+1/2, y j , zk),
(xi , y j+1/2, zk), (xi , y j , zk+1/2) and (xi+1/2, y j+1/2, zk+1/2). Here,
xi+1/2 represents xi + �xi/2 and so on, where �xi , �y j and �zk

are the dimensions of the grid cell (i, j, k), respectively, in the x-,
y- and z-directions. In the same cell, all components of H are lo-
cated at (xi , y j , zk), (xi , y j+1/2, zk+1/2), (xi+1/2, y j , zk+1/2) and
(xi+1/2, y j+1/2, zk). Fig. 1(a) shows the E and H fields locations on
the Lebedev grid. Similar to the Yee grid, E and H are staggered by
half a spatial step.

As described by Davydycheva et al. (2003) and Nauta et al.
(2013), a Lebedev grid can be thought of as a superposition of four
shifted Yee grids; for example those shown in Figs 1(b)–(e). To
demonstrate this, we consider the standard Yee grid (Fig. 1b) where
the E and H components have the indices

Ex (xi+1/2, y j , zk), Ey(xi , y j+1/2, zk), Ez(xi , y j , zk+1/2),

Hx (xi , y j+1/2, zk+1/2), Hy (xi+1/2, y j , zk+1/2), Hz(xi+1/2, y j+1/2, zk ).

We call this Yee grid as subgrid 1, or cluster 000 as in Davy-
dycheva et al. (2003). Let us consider a grid constructed from the
standard Yee grid by shifting the components of E and H by �xi/2
and �y j/2, respectively, in the (+/−) x- and (+/−) y-directions
(Fig. 1c). On this shifted Yee grid, the components of E and H have
the indices

Ex (xi , y j+1/2, zk), Ey(xi+1/2, y j , zk), Ez(xi+1/2, y j+1/2, zk+1/2),

Hx (xi+1/2, y j , zk+1/2), Hy(xi , y j+1/2, zk+1/2), Hz(xi , y j , zk).

This grid is referred to as subgrid 2 or cluster 110. Similarly,
subgrid 3 (or cluster 101) is constructed by shifting the com-
ponents of E and H by �xi/2 and �zk/2, respectively, in the
(+/−) x- and (+/−) z-directions (Fig. 1d), and subgrid 4 (or
cluster 011) by �y j/2 and �zk/2, respectively, in the (+/−) y-
and (+/−) z-directions (Fig. 1e). Subgrids 3 and 4 are defined by,
respectively,

Ex (xi , y j , zk+1/2), Ey(xi+1/2, y j+1/2, zk+1/2), Ez(xi+1/2, y j , zk),

Hx (xi+1/2, y j+1/2, zk), Hy(xi , y j , zk), Hz(xi , y j+1/2, zk+1/2),
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Figure 1. (a) Lebedev grid cell used to define the collocated electric and magnetic field components. (b) Standard Yee grid, and (c, d and e) the complementary
Yee grids constructed by shifting the components of E and H by half a cell in the x-, y- and z-directions as explained in the text.

and

Ex (xi+1/2, y j+1/2, zk+1/2), Ey(xi , y j , zk+1/2), Ez(xi , y j+1/2, zk),

Hx (xi , y j , zk), Hy(xi+1/2, y j+1/2, zk), Hz(xi+1/2, y j , zk+1/2).

Superposition of these four shifted Yee grids results in the Lebe-
dev grid shown in Fig. 1(a). For anisotropic media, these subgrids
are coupled since the off-diagonal elements of the conductivity ten-
sor are non-zero, and hence the current density term in eq. (3), that

is (σ̄E)x = σxx Ex + σxy Ey + σxz Ez , requires knowledge not only
of Ex at a given node, but also of Ey and Ez at the same node, which
belong to different subgrids. Similarly, the current density term in
eqs (4) and (5) requires knowledge of E components belonging
to different subgrids at the same node. However, if the conductiv-
ity tensor is diagonal (isotropic, VTI, HTI, or triaxial anisotropic
medium), eqs (3)–(5) imply that on each subgrid, computation of
the current density term requires only one component of E from the
same subgrid. In other words, these subgrids are decoupled for a
diagonal conductivity tensor.
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Fig. 1 indicates that the FD discretization of eqs (3)–(5) requires
conductivity values at electric field nodes (cell centre and halfway
along cell edges). A constant conductivity is assumed within each
cell, but it usually varies from cell to cell. This implies that the
conductivity at the cell edges could be discontinuous, and hence
a proper conductivity averaging is required. We follow a homoge-
nization formula described in Davydycheva et al. (2003) to compute
averaged conductivity at the nodes.

The discrete FD approximations of eqs (3)–(5) on a Lebedev grid
can easily be obtained by combining the discrete FD approximations
on the above four Yee grids. One can follow the FD approximations
of derivatives in the PDEs (3)–(5) on the standard Yee grid given by
Newman & Alumbaugh (1995) and extend them to the remaining
shifted Yee grids. For example, the FD approximations of ∂2

y Ex and
∂y∂x Ey at (xi , y j+1/2, zk) on subgrid 2 are

∂2 Ex

∂ y2

∣∣∣
i, j+ 1

2 ,k
≈ 1

�ys j�ys j+1

[�ys j

�y j
E x

i, j+ 3
2 ,k

−
(
�ys j +�ys j+1

)
�y j

E x
i, j+ 1

2 ,k
+ �ys j+1

�y j
E x

i, j− 1
2 ,k

]
,(6)

∂2 Ey

∂y∂x

∣∣∣∣
i, j+ 1

2 ,k

≈ 1

�xsi�y j

[
E y

i+ 1
2 , j+1,k

− E y

i+ 1
2 , j,k

− E y

i− 1
2 , j+1,k

+E y

i− 1
2 , j,k

]
, (7)

where �ys j = 1
2 (�y j−1 + �y j ) and so on. Similarly, we can com-

pute the FD approximations for all derivatives in the PDEs (3)–(5)
on all shifted Yee grids.

The FD discretization of eqs (3)–(5) on a Lebedev grid results in
a system of linear equations

Mx = s, (8)

where M is the system matrix of dimension 12N × 12N for a
modelling grid with N = Nx × Ny × Nz cells, x is a vector of
dimension 12N containing unknown electric field components Ex ,
Ey and Ez , and s (dimension 12N ) is the source vector resulting
from the right hand side of eq. (1). The matrix M is a sparse,
complex and non-Hermitian matrix, having up to 15 non-zero ele-
ments in a row.

Iterative solver and preconditioning

The matrix eq. (8) is solved using a preconditioned BiCGStab(2)
(van der Vorst 1992; Gutknecht 1993) algorithm, which is a Krylov
subspace method. A preconditioner is crucial specifically for poorly
conditioned matrices to accelerate the convergence of Krylov sub-
space solvers. The poor conditioning of a system matrix may be
caused due to presence of a highly resistive air layer, which gives a
large null-space to the 3-D curl–curl operator, and/or large cell as-
pect ratios, for example in the air layer and thick boundary paddings.

Preconditioning transforms the original linear system (8) into
a preconditioned system, which has a smaller condition number
than the original one (Saad 2003). For a preconditioning matrix P,
eq. (8) can be written into its left preconditioned form as

P−1Mx = P−1 s, (9)

which gives the same solution as the original matrix eq. (8). The
preconditioning matrix P should be chosen such that P−1M is as

Algorithm 1. Preconditioned BiCGStab algorithm with a preconditioning
matrix P.

1. Compute the initial residual: r0 = s − Mx0 for an initial guess x0

2. Select an arbitrary vector r̃0 such that the inner product
(r0, r̃0) �= 0, e.g. r̃0 = r0

3. Set the initial search direction a0 = r0

for i = 0, 1, 2, . . . until convergence do:
4. âi = P−1 ai

5. αi = (ri , r̃0)/(Mâi , r̃0)
6. bi = ri − αi Mâi

7. b̂i = P−1 bi

8. ωi = (bi , Mb̂i )/(Mb̂i , Mb̂i )
9. xi+1 = xi + αi âi + ωi b̂i

10. ri+1 = bi − ωi Mb̂i

11. βi = αi (ri+1, r̃0)/ωi (ri , r̃0)
12. ai+1 = ri + βi (ai − ωi Mâi )

end

close to the identity matrix as possible. In this work a multigrid pre-
conditioner P is used. In other words, whenever we need to compute
a product P−1 by some vector z and assign it to vector y (i.e. to
find y = P−1z), we use a multigrid solver to find an approximate
solution of the linear system M y = z. On every BiCGStab itera-
tion, one needs to compute product of P−1 by a vector two times:
on steps 4 and 7 on the BiCGStab algorithm (see Algorithm 1).
In computations, we used BiCGStab(2) method which is slightly
more advanced than BiCGStab presented in Algorithm 1, but it also
requires solution of the same two linear systems in each iteration.

M U LT I G R I D M E T H O D

The multigrid method provides a means to iteratively solve systems
of equations arising from the discretisation of elliptic boundary
value problems. It is built on two basic principles (Wesseling 1991;
Briggs et al. 2000; Trottenberg et al. 2001).

First, many classical iterative methods (e.g. Jacobi, Gauss-Seidel,
etc.) have a strong error smoothing effect which makes them very ef-
fective at eliminating the oscillatory or high-frequency components
of the error in a few iterations only, while leaving the smooth or low-
frequency components relatively unchanged. The slow convergence
of the classical iterative methods is mainly due to the slower elimi-
nation of the smooth components. These classical iterative methods
are also referred to as smoothers or relaxation methods.

The second principle is the coarse-grid principle, which implies
that a smooth error term on a finer grid can be accurately repre-
sented on a coarser grid essentially without any loss of information.
Moreover, the smooth error components on the fine grid become
more oscillatory on the coarse grid.

These two principles suggest that a coarse grid can be used to
eliminate the smooth error components quickly. For this, we first
relax the linear system on the fine grid using a smoother. After a
few iterations of the smoother (usually 1, 2 or 3), relaxation begins
to stall, indicating the dominance of smooth error components on
this grid. We then move to a coarser grid, where the smooth er-
ror components appear more oscillatory, and hence the smoother
eliminates them more efficiently. These are the main ideas of the
so-called coarse-grid correction scheme. In a multigrid method, this
scheme is applied recursively.

The multigrid method can be used as a standalone solver or as a
preconditioner for another solver, for example BiCGStab. In both
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Figure 2. Structure of one multigrid cycle: (a) V-cycle, (b) W-cycle and (c) F-cycle. The finest grid has a cell-size of h and the coarsest 8h.

cases, one looks for an approximate solution of a linear system of
the type

My = z. (10)

If the multigrid solver is used as a preconditioner for BiCGStab,
this system needs to be solved on steps 4 and 7 of the BiCGStab
method (Algorithm 1), where z is a known vector (ai or bi ) and y is
an unknown vector (âi or b̂i ). Note that the inverse preconditioning
matrix P−1 appearing in the Algorithm 1 is never computed explic-
itly: it is only implicitly defined by the equation ỹ = P−1 z, where ỹ
is an approximate solution of eq. (10) obtained by the full multigrid
cycle.

If we denote the matrix M as Mh and the vectors y and z as yh

and zh on a modelling grid �h with cell size h then eq. (10) reads

Mh yh = zh . (11)

For the coarse-grid correction, first a smoother or relaxation op-
erator Sh(Mh, zh, yh

0) is applied to compute an approximation ỹh

of yh as

ỹh = Sh
(
Mh, zh, yh

0

)
, (12)

where yh
0 is an initial guess. The vector ỹh approximates the oscil-

latory part of the solution well after a few pre-smoothing iterations,
say n1. The error in this approximation is eh = yh − ỹh , which sat-
isfies the following residual equation of the linear eq. (11)

Mh eh = rh, (13)

where rh = zh − Mh ỹh is the residual. At this point, the residual
rh is transferred to a coarser grid �2h with the cell size 2h. This is
achieved using a restriction operator I 2h

h such that r2h = I 2h
h rh on

�2h . Therefore, the residual equation becomes

M2h e2h = r2h (14)

on �2h . This problem (eq. 14) can be solved for e2h using a direct
solver if the number of unknowns on the coarser grid �2h is suffi-
ciently small. The computed error e2h (or the coarse-grid correction)
on �2h then needs to be transferred back to the modelling grid �h .
This is achieved using an interpolation or prolongation operator I h

2h

such that eh = I h
2h e2h . The fine-grid error is then used to update the

approximate solution ỹh , obtained after n1 pre-smoothing iterations,
as ỹh := ỹh + eh . Finally, n2 additional smoothing iterations (post-

smoothing iterations) are applied on the fine-grid. This constitutes
one iteration of the coarse-grid correction.

If the number of unknowns on the coarse grid �2h is too large
to be handled by a direct solver, we apply the above procedure
recursively by considering successive coarser grids, for example
�2h , �4h , �8h . . . �Lh , respectively, with the cell sizes 2h, 4h,
8h, . . . Lh, where L = 2l for l ≥ 1.

The multigrid method can visit the coarser grids in different ways,
as illustrated in Fig. 2 presenting the three main types of multigrid
cycles (Briggs et al. 2000): V-, W- and F-cycles. The simplest
one is the V-cycle, in which the coarse-grid correction scheme is
recursively applied only once at each successive multigrid level,
while in the most powerful W-cycle it is applied twice. The F-cycle
is a good compromise: its convergence is faster than for the cheap
V-cycle, but only slightly slower than for the expensive W-cycle.

For all the modelling examples, we chose the F-cycle with
two post-smoothing iterations (n2 = 2), while the number of pre-
smoothing iterations is zero (n1 = 0). In the following, we describe
our selection of the smoother, prolongation, restriction and coarse-
grid operators in detail.

Smoother or relaxation

In our implementation, we follow the method introduced by Arnold
et al. (2000) to choose a smoother. For the Yee grid, Mulder (2006)
implemented this method as a smoother for the linear system ob-
tained using the FI discretization of Maxwell’s equations. It selects
one node of a cell and simultaneously solves a local 6 × 6 linear
system for six unknowns on the six edges attached to the node. If
node (xi , y j , zk) is selected, the six equations are solved for un-
knowns F x

i±1/2, j,k , F y
i, j±1/2,k and Fz

i, j,k±1/2. Here, the unknowns Fx ,
Fy and Fz are part of the vector y in eq. (10) and their values at node
(xi±1/2, y j , zk) are indexed as F x

i±1/2, j,k ≡ Fx (xi±1/2, y j , zk), and
so on.

This smoother follows the lexicographical ordering of the cells
(i, j, k), with the fastest index i = 1, . . . , Nx , intermediate index
j = 1, . . . , Ny and the slowest index k = 1, . . . , Nz . In addition,
it is applied in a symmetric Gauss–Seidel fashion. The first smooth-
ing iteration follows this lexicographical ordering and solves for
F x

i±1/2, j,k , F y
i, j±1/2,k and Fz

i, j,k±1/2 at all the selected nodes on the FD
grid, and hence gives an approximation of y. The next smoothing
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iteration is performed in the opposite direction, that is fastest index
i = Nx , . . . , 1, intermediate index j = Ny , . . . , 1 and the slowest
index k = Nz , . . . , 1; this smoothing iteration updates the values of
F x

i±1/2, j,k , F y
i, j±1/2,k and Fz

i, j,k±1/2 (i.e. the approximate values of y),
computed during the previous lexicographical-ordered smoothing
iteration. Therefore, one iteration of the smoother in the symmetric
Gauss–Seidel fashion is equivalent to two smoothing iterations, that
is n1 or n2 = 2. This smoother has an important property that it
locally imposes the divergence-free characteristics of the current
density, that is ∇.σ̄E = 0, each time a 6 × 6 matrix is solved at
a selected node (Mulder 2006). Even though this property is lost
from one node to another, this provides sufficient damping to the
large null-space of the 3-D curl-curl operator to avoid convergence
issues. Therefore, an explicit divergence correction (Smith 1996) is
not required.

We extend this smoothing method for the FD discretization of
Maxwell’s equation on the Lebedev grid, where it selects four nodes
in each cell and solves four local 6 × 6 linear systems for unknowns
adjacent to each of the four selected nodes. These four nodes include
one corner node (xi , y j , zk) and three face-centred nodes defined
at (xi+1/2, y j+1/2, zk), (xi+1/2, y j , zk+1/2) and (xi , y j+1/2, zk+1/2).
The unknowns are located at half a cell size away from each of
these nodes in the ±x-, ±y- and ±z-directions. Therefore, if the
smoother selects node (xi , y j , zk) (star in Fig. 1b), the six equations
are solved for unknowns F x

i±1/2, j,k , F y
i, j±1/2,k and Fz

i, j,k±1/2. For node
(xi+1/2, y j+1/2, zk) (star in Fig. 1c), the six equations are solved for
unknowns F x

i+1/2±1/2, j+1/2,k , F y
i+1/2, j+1/2±1/2,k and Fz

i+1/2, j+1/2,k±1/2.
For node (xi+1/2, y j , zk+1/2) (star in Fig. 1d), the six equa-
tions are solved for unknowns F x

i+1/2±1/2, j,k+1/2, F y
i+1/2, j±1/2,k+1/2

and Fz
i+1/2, j,k+1/2±1/2. Finally, for node (xi , y j+1/2, zk+1/2) (star in

Fig. 1e), the six equations are solved for unknowns F x
i±1/2, j+1/2,k+1/2,

F y
i, j+1/2±1/2,k+1/2 and Fz

i, j+1/2,k+1/2±1/2.

Prolongation, restriction and coarse-grid operators

We assume that Nx = 2nx p, Ny = 2ny q and Nz = 2nz r with integers
nx ≥ 1, ny ≥ 1 and nz ≥ 1, and p, q and r = 1, 3, or 5. This choice
assures an easy construction of the coarse-grid �2h by selecting
every other point of xh

i (i = 1, 2, . . . Nx ), yh
j ( j = 1, 2, . . . Ny)

and zh
k (k = 1, 2, . . . Nz) of the fine grid �h . Hence, the main nodes

of the coarse grid become (x2h
I , y2h

J , z2h
K ) with I = (i + 1)/2,

J = ( j + 1)/2 and K = (k + 1)/2 for i = 1, 3, . . . Nx − 1,
j = 1, 3, . . . Ny − 1 and k = 1, 3, . . . Nz − 1. Fig. 3 illustrates
a coarse grid cell obtained by combining eight fine grid cells (blue),
that is two fine grid cells in each direction.

A prolongation operator I h
2h is required to transfer the coarse-grid

correction e2h from the coarse grid �2h to the fine grid �h . We use
constant, linear, bilinear and trilinear interpolations for this purpose
depending on the node positions. For example, for the x-staggered
nodes for i2 = 0, 1, j2 = −1, 0, 1 and k2 = −1, 0, 1

eh
i+1/2+i2, j+ j2,k+k2

= w
y
j2

wz
k2

e2h
I+1/2,J,K , (15)

where

w
y
−1 = yh

j−1 − y2h
J−1

y2h
J − y2h

J−1

, w
y
0 = 1, and w

y
1 = y2h

J+1 − yh
j+1

y2h
J+1 − y2h

J

, (16)

and

wz
−1 = zh

k−1 − z2h
K−1

z2h
K − z2h

K−1

, wz
0 = 1, and wz

1 = z2h
K+1 − zh

k+1

z2h
K+1 − z2h

K

. (17)

Figure 3. A coarse grid cell (black) obtained by combining eight fine grid
cells (blue), that is two fine grid cells in each direction. Top-left corner node
of a cell is denoted by (xi , y j , zk ) on the fine grid and by (xI , yJ , zK ) on
the coarse grid, where I = (i + 1)/2, J = ( j + 1)/2, and K = (k + 1)/2
for i = 1, 3, . . . Nx − 1, j = 1, 3, . . . Ny − 1, and k = 1, 3, . . . Nz − 1.

Similarly, for the y-staggered node for i2 = −1, 0, 1, j2 = 0, 1
and k2 = −1, 0, 1

eh
i+i2, j+1/2+ j2,k+k2

= wx
i2

wz
k2

e2h
I,J+1/2,K , (18)

and the z-staggered node for i2 = −1, 0, 1, j2 = −1, 0, 1 and
k2 = 0, 1

eh
i+i2, j+ j2,k+1/2+k2

= wx
i2

w
y
j2

e2h
I,J,K+1/2, (19)

where

wx
−1 = xh

i−1 − x2h
I−1

x2h
I − x2h

I−1

, wx
0 = 1, and wx

1 = x2h
I+1 − xh

i+1

x2h
I+1 − x2h

I

, (20)

and w
y
j2

for j2 = −1, 0, 1 and wz
k2

for k2 = −1, 0, 1 are,
respectively, given in eqs (16) and (17).

For the cell-centred nodes defined at (xi+1/2, y j+1/2, zk+1/2), we
use a trilinear interpolation using

eh
i+1/2+i2, j+1/2+ j2,k+1/2+k2

= vx
i2

v
y
j2
vz

k2
e2h

I+1/2,J+1/2,K+1/2, (21)

for i2 = −1, 0, 1, 2, j2 = −1, 0, 1, 2 and k2 = −1, 0, 1, 2.
Here, the weights are

vx
−1 = xh

i−1/2 − x2h
I−1/2

x2h
I+1/2 − x2h

I−1/2

, vx
0 = xh

i+1/2 − x2h
I−1/2

x2h
I+1/2 − x2h

I−1/2

,

vx
1 = x2h

I+3/2 − xh
i+3/2

x2h
I+3/2 − x2h

I+1/2

, and vx
2 = x2h

I+3/2 − xh
i+5/2

x2h
I+3/2 − x2h

I+1/2

. (22)

Similarly, we define the weights v
y
j2

and vz
k2

, respectively, for
j2 = −1, 0, 1, 2 and k2 = −1, 0, 1, 2.

For the cell-centred nodes, we have also experimented with a pro-
longation operator that is obtained by extending Mulder’s (2006)
implementation. The expression of this operator is the same as the
expression given in eq. (21), but the weights and subscripts i2, j2
and k2 are different: vx

i2
= v

y
j2

= vz
k2

= 1, and i2 = 0, 1, j2 = 0, 1
and k2 = 0, 1. This operator is essentially a constant interpolation
operator. However, we observed a slower convergence of the pre-
conditioned solver with this operator than with our trilinear inter-
polation operator of eq. (21). Therefore, we have used the trilinear
interpolation operator for all the modelling examples presented in
this paper.
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Figure 4. Illustration of successive Euler rotation of the global x-y-z coordinate system (a) to obtain any orientation of the anisotropic principal-axis coordinate
system using anisotropic strike (φ), dip (θ ) and slant (ψ) angles as shown in (b), (c) and (d), respectively.

A restriction operator I 2h
h , required to transfer the fine-grid resid-

ual rh to the coarse-grid, is taken as the transpose of the prolongation
operator I h

2h . This implies that the same weights are used as in the
prolongation operator. Therefore, for the x-, y- and z-staggered
nodes, respectively,

r 2h
I+1/2,J,K =

1∑
j2=−1

1∑
k2=−1

w
y
j2
wz

k2

(
r h

i+1/2, j+ j2,k+k2
+ r h

i+3/2, j+ j2,k+k2

)
,

(23)

r 2h
I,J+1/2,K =

1∑
i2=−1

1∑
k2=−1

wx
i2
wz

k2

(
r h

i+i2, j+1/2,k+k2
+ r h

i+i2, j+3/2,k+k2

)
,

(24)

and

r 2h
I,J,K+1/2 =

1∑
i2=−1

1∑
j2=−1

wx
i2
w

y
j2

(
r h

i+i2, j+ j2,k+1/2 + r h
i+i2, j+ j2,k+3/2

)
.

(25)

For the cell-centred node

r 2h
I+1/2,J+1/2,K+1/2

=
2∑

i2=−1

2∑
j2=−1

2∑
k2=−1

vx
i2
v

y
j2
vz

k2
r h

i+1/2+i2, j+1/2+ j2,k+1/2+k2
. (26)

In the implementation, the coarse-grid operator M2h is obtained
using Galerkin coarse-grid approximation (Wesseling 1991). If I2h

h

is a restriction operator matrix of dimension K × N and Ih
2h is a

prolongation operator matrix of dimension N × K , then the coarse-
grid operator is

M2h = I2h
h MhIh

2h . (27)

The dimension of M2h is K × K , where K = N/8 for the
coarse-grid �2h . Note that Ih

2h = (I2h
h )T, where T represents the

transpose operator. In practice, I2h
h and Ih

2h are very sparse, and
hence they lead to a very efficient computation of M2h .

B E N C H M A R K I N G R E S U LT S

In this section, we compare the simulation results produced by
the developed multigrid preconditioner based 3-D anisotropic
frequency-domain finite-difference (FDFD) modelling code against
results produced by well-established methods.

For practical purposes, the electrical conductivity tensor of each
model cell is described in a principal-axis coordinate system of
the anisotropic medium. In this coordinate system, the anisotropic
conductivity tensor σ̄ can be represented by a diagonal conductivity
tensor σ̄ D using elementary rotations by Euler angles φ, θ and ψ .
These Euler angles φ, θ and ψ are, respectively, the anisotropic
strike (rotation around z-axis in Fig. 4b), dip (rotation around y′-
axis in Fig. 4c) and slant angles (rotation around z′′-axis in Fig. 4d)
(Martı́ 2014). These rotation angles can describe the orientation
of the principal-axis coordinate system of any anisotropic medium.
The anisotropic conductivity tensor σ̄ in the global x-y-z coordinate
system can easily be recovered from the principal-axis coordinate
system using a rotation matrix R,

σ̄ = RT σ̄ DR. (28)

The elements of R are the sines and cosines of the angles between
the principal-axis and global x-y-z coordinate systems. If the con-
ductivity in the two of the three principal directions is equal (e.g. in
a transverse isotropy), the elements of R can be uniquely expressed
in terms of only two Euler angles corresponding to the strike φ and
dip θ angles:

R =

⎡
⎢⎢⎣

cos θcos φ cos θsin φ − sin θ

− sin φ cos φ 0

sin θcos φ sin θsin φ cos θ

⎤
⎥⎥⎦ . (29)

For a TTI medium, σ̄ D = diag(σx ′′ , σy′′ , σz′′ ), where σx ′′ =
σy′′ := σT (or ρT

−1) is the conductivity (or resistivity−1) in the bed-
parallel direction and σz′′ := σN (or ρN

−1) is the conductivity (or
resistivity−1) perpendicular to the bedding planes. Hence, the con-
ductivity of each model cell can be specified with only four model
parameters: σT , σN , φ and θ . For a VTI medium, the angles φ

and θ are zero, and conductivities σT and σN are, respectively, the
horizontal and vertical conductivities.
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Figure 5. Vertical cross-section of a deep-water TTI layered earth model
used for comparison with semi-analytical solutions.

Deep-water layered earth model

Let us consider the deep-water layered Earth resistivity model de-
picted in Fig. 5. The layers in the model are tilted with the dip
angle θ = −20◦, while the strike angle φ is zero. The anisotropic
layers are assumed to be TTI ( σx ′′ = σy′′ ) with their symmetry axis
directed normal to the layers. The anisotropy factors (ρN /ρT ) in dif-
ferent layers vary from one to three. The dimension of the model is
32 × 25.6 × 25.6 km3, which is sufficiently large for the EM fields
to satisfy homogeneous Dirichlet conditions at the boundaries when
the source is located in the central part of the model. The model
was discretized with an FD grid having uniform cell sizes of 100 m
in the x- and z-directions and 200 m in the y-direction. The FD
discretization of the model resulted in 320 × 128 × 256 cells, rep-

resenting approximately 126 million degrees of freedom. The EM
fields are excited by an x-oriented horizontal electric dipole (HED)
source with frequencies 0.25 and 0.5 Hz towed 130 m above the
tilted seabed.

We carried out all simulations sequentially on a computer with
Intel Xeon CPU E5-2690 processors running at 2.90 GHz and 264
GB of memory. The resulting linear systems obtained using the FD
discretization of the PDEs (3)–(5) were solved using the above-
described multigrid preconditioned BiCGStab(2) solver. The itera-
tions were stopped when the relative residual norm (||Mx − s||/||s||)
dropped below 10−8. For 0.25 and 0.5 Hz frequencies, the solver,
respectively, needed 11 and 9 iterations to solve the linear systems
and the corresponding linear system solution time was 218 and 178
minutes.

We compare the 3-D simulation results obtained using the devel-
oped anisotropic FDFD method to reference fields calculated using
a semi-analytical plane-layer method (Løseth & Ursin 2007). To
compute semi-analytical results for this TTI model, we rotate the
x-y-z coordinate system by the angle θ so that it coincides with the
principal-axis coordinate system of the model—the same way as it
was done in Shantsev & Maaø (2015). Fig. 6(a) shows the ampli-
tude (left) and phase (right) responses for the x-component of the
electric field (Ex ) at 0.25 and 0.5 Hz along a receiver line located
100 m above the seabed. The horizontal electric field Ex is com-
puted using electric field components, which are in the bed-parallel
(the x ′′-component) and bed-perpendicular (the z′′-component) di-
rections. The solid lines and filled circles, respectively, show results
obtained with our anisotropic 3-D FDFD method and the plane-
layer method. The corresponding normalized amplitudes and phase
differences between these results are shown in Fig. 6(b). Except for
the responses that are very close to the source position, the field
amplitudes differ at most by 2.1 and 2.0 per cent and the phases at
most by 1.5 and 3◦, respectively, for 0.25 and 0.5 Hz.

Figure 6. (a) Amplitude (left-hand panel) and phase (right-hand panel) responses of Ex at 0.25 and 0.5 Hz for the deep-water TTI model of Fig. 5. They are
calculated using the developed anisotropic 3-D FDFD method (solid lines) and the plane-layer method of Løseth & Ursin (2007) (filled circles). (b) Normalized
amplitude (left-hand panel) and phase difference (right-hand panel) between responses calculated using these two methods.
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Table 1. Uniform discretizations of the deep-water layered earth TTI model and the corresponding runtime statistics for the linear system solution. Here in
the x-, y- and z-directions, dx , dy and dz are the cell sizes, and Nx , Ny and Nz are the number of cells. 12N = 12Nx Ny Nz is the total number of unknowns,
Niter is the number of BiCGStab(2) iterations required for the relative residual norm to drop below 10−8, and T is the linear system solution time.

Niter T (s)
dx dy dz Nx Ny Nz 12N f = 0.25 Hz f = 0.5 Hz f = 0.25 Hz f = 0.5 Hz

100 200 100 320 128 256 125 829 120 11 9 13 121.4 10 685.1
200 200 100 160 128 256 62 914 560 10 8 6130.0 4809.6
200 200 200 160 128 128 31 457 280 8 7 2059.7 1765.2
400 400 200 80 64 128 7864 320 6 4 427.6 282.3
400 400 400 80 64 64 3932 160 4 4 135.2 132.4
800 800 800 40 32 32 491 520 4 4 16.8 16.7

We also computed relative errors,√√√√∣∣E true − EFD
∣∣2

|E true|2 + η2
, (30)

averaged over source–receiver offsets from −10 to 10 km, where
E true and EFD are the complex-valued electric fields computed using
the plane-layer and anisotropic 3-D FDFD methods, respectively.
The term η representing the ambient noise level is added to prevent
unreasonably large relative errors when the field is close to zero. We
also exclude offsets shorter than 1 km where the relative errors are
very much affected by discretization errors due to fast variations of
the fields in space. The average relative errors (with η = 5 × 10−17

Vm−1) are 1.8 and 2.8 per cent, respectively, for 0.25 and 0.5 Hz
frequencies. These errors imply that the developed anisotropic 3-
D FDFD algorithm provides quite accurate results for the deep-
water TTI layered earth model with 20-degree dip and anisotropy
factors up to three. It is important to emphasize that we also expect
some portion of the error due to the staircase approximation of the
tilted interfaces in the FD discretization of the model. Note also
that the modelled resistor is only one cell thick and in addition is
tilted relative to the grid. Thus the observed small errors is quite
an impressive result for a finite difference code, which to a large
degree is due to an efficient cell homogenization scheme adopted
from Davydycheva et al. (2003).

Let us now examine how performance of the multigrid precondi-
tioned BiCGStab(2) solver depends on the system size. We carried
out forward simulations on the same resistivity model, but with five
different discretizations which resulted in different number of un-
knowns varying from ∼126 million to ∼0.5 million. The number
of BiCGStab(2) iterations and the time spent to solve the linear
systems for each case are given in Table 1. We notice that the solver
needed somewhat more iterations for the bigger linear systems than
for the smaller ones. Meanwhile, the solution time increased ap-
proximately linearly with the number of unknowns. A similar trend
was observed for a BiCGStab solver with an algebraic multigrid
preconditioner implemented for the FE discretization by Koldan et
al. (2014).

Shallow-water layered earth model

Fig. 7 shows the shallow-water layered earth model with 200 m of
seawater. The EM fields are excited by an x-oriented HED with a
frequency of 0.5 Hz towed 30 m above the seabed. The dimension of
the model is 20 × 20 × 6 km3. We shall refer to this domain as the
‘domain of interest’, which includes the source and receivers. For
shallow-water models, it is essential to include a thick air layer above
the sea surface; therefore, the top boundary of the computational
domain included an air layer of thickness ∼ 50 km and resistivity

Figure 7. Vertical cross-section of a shallow-water layered earth model.
The model also includes an air layer of thickness ∼50 km and resistivity
106 �m above the seawater. For a shallow-water VTI model, the anisotropic
layers (above and below the isotropic reservoir) have zero dip and zero strike
angles (θ = φ = 0◦), while for a TTI model, they are assumed to have
tilted anisotropy with dip angle θ = −20◦ and strike angle φ = 0◦.

106 �m. In addition, 30 km padding was added at the vertical and
bottom boundaries of the domain of interest along with the air layer
to avoid edge effects due to the combination of strong shallow-
water airwave and zero-field Dirichlet boundary conditions. This
additional padding is referred to as the ‘extended domain’ and it has
proven to be critical to ensure good modelling accuracy (Jaysaval
et al. 2015).

In the previous deep-water layered Earth case, we validated the
accuracy of the developed anisotropic 3-D FDFD results against
semi-analytical solutions obtained using the plane-layer method
developed by Løseth & Ursin (2007). This plane-layer method is
only applicable for VTI layered earth models. To compute a semi-
analytical solution for the deep-water TTI layered earth model with
axis of symmetry normal to the tilted interfaces, we rotated the x-y-z
coordinate system so that it coincides with the principal-axis coor-
dinate system of the model. This simple approach, however, is not
applicable for similar shallow-water TTI layered earth models be-
cause, otherwise, the air-water interface becomes a tilted interface,
which cannot exist in the real world. Therefore, we first consider
the shallow-water VTI layered model of Fig. 7 and compare the de-
veloped anisotropic 3-D FDFD simulation results against the semi-
analytical solutions. We subsequently assume that the anisotropic
layers in this model have tilted anisotropy and then compare the
anisotropic 3-D FDFD simulation results against results computed
using COMSOL Multiphysics software.

Non-uniform grids were used to discretize the computational
domain (including the domain of interest, air layer and extended
domain). Away from the source the cell size increased according to
a power law dh (n) = min(dhmin × λn−1, dhmax) where h = x, y,

or z; n = 1, 2,. . . . . . is a cell counter; dhmin is the minimum cell
size; dhmax is the maximum cell size; and λ is a constant growth
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Table 2. Non-uniform discretizations of the shallow-water layered earth model and the corresponding runtime statistics for the linear system solution. Here in
the x-, y- and z-directions, respectively, λx , λy and λz are the constant growth factors, dxmin, d ymin and dzmin are the minimum cell sizes, dxmax, d ymax and
dzmax are the maximum cell sizes. The other nomenclatures are the same as in Table 1. The domain of interest refers to the main computational volume, which
includes the source and receivers; whilst the extended domain refers to the padding added at the model boundaries to reduce the errors due to truncation of the
unbounded domain. In the extended domain, the minimum cell sizes are equal to the corresponding maximum cell sizes in the domain of interest, while the
maximum cell size is 4000 m in all directions, and λx = λy = λz = λ.

Domain of interest Extended domain
dxmin = dxmax =

λx = λy d ymin (m) d ymax (m) λz dzmin (m) dzmax (m) Nx = Ny Nz λ Nx = Ny Nz 12N Niter T (s)

1.019 60 270 1.039 20 200 156 108 1.16 36 20 56 623 104 69 36 834.1
1.039 70 440 1.051 30 250 98 78 1.16 30 18 18 874 368 62 9777.4
1.065 80 680 1.058 42 360 70 65 1.24 26 15 8847 360 44 3442.8
1.073 100 780 1.079 42 450 60 52 1.24 20 12 4915 200 52 2345.2
1.096 120 1000 1.085 50 500 48 38 1.24 16 10 2359 296 48 987.4

factor. The values of λ were a function of dhmin, dhmax, the to-
tal number of cells and the distance from the source to the model
boundaries. The cell sizes were chosen finer near the source in or-
der to better accommodate for the rapid variation of the EM fields
in that region. The values of λ were smaller in the domain of in-
terest, while they were larger in the air layer and in the extended
domain. Table 2 specifies five different grids used to discretize
the domain of interest and extended domain by listing the corre-
sponding λ values, the minimum and maximum cell sizes in the
domain of interest, the number of cells and resulting number of
unknowns. In the extended domain, the minimum cell sizes are
equal to the corresponding maximum cell sizes in the domain of
interest and the maximum cell size is 4000 m. The air layer was
discretized with 20 horizontal layers of cells with λ = 1.31 (in the
z-direction) and minimum cell thickness of 60 m at the air-water
interface.

We first consider the VTI model (θ = φ = 0◦) of Fig. 7. The
multigrid preconditioned BiCGStab(2) solver needed 70 iterations
to allow the relative residual norm to become smaller than 10−8

for the linear system with the largest number of unknowns over
56 million (top row in Table 2). The corresponding linear sys-
tem solution time was 617 minute. We notice that the conver-
gence rate of the solver became significantly slower than for the
deep-water model, cf. Table 1. The reason for the slow conver-
gence is ill conditioning of the matrix resulting from large as-
pect ratios of the cell sizes in the air layer and thick boundary
paddings. The very high resistivity in the air layer is an additional
reason—this gives a large null-space to the 3-D curl–curl operator
(Mulder 2006).

Fig. 8(a) shows the amplitude (left) and phase (right) responses
for Ex (black line) and Ez (red line) at 0.5 Hz along an inline receiver
line located at the seabed. Fig. 8(b) (black and red lines) shows the

Figure 8. (a) Amplitude (left-hand panel) and phase (right-hand panel) responses of Ex and Ez at 0.5 Hz for the shallow-water VTI and TTI models of Fig. 7
computed using the developed anisotropic 3-D FDFD method. (b) Normalized amplitude (left-hand panel) and phase difference (right-hand panel) between
the responses shown in (a) and a semi-analytical solution (Løseth & Ursin 2007) for the VTI model, and between Ex shown in (a) and Ex computed using
COMSOL Multiphysics software for the TTI model.
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Figure 9. Mesh used to discretize the resistivity model of Fig. 7 (along with the air layer and boundary paddings) to compute a numerical solution using
COMSOL. It has three spheres with radii of respectively 15, 45 and 70 km, where the element sizes increase from innermost to outermost spheres. The
discretization of the domain of interest is included in the innermost sphere. Furthermore, there is a cylinder with radius 1.5 km and length 26 km in the
innermost sphere containing the region where the source and receivers are located and having the finest discretization. The total number of unknowns for this
mesh is ∼9.4 million.

normalized amplitudes (left) and phase differences (right) between
the responses shown in (a) and a semi-analytical solution (Løseth &
Ursin 2007) for the shallow-water VTI model. We see that except
for the responses that are very close to the source position, the field
amplitudes differ at most by 1 per cent and the phases at most by
0.9◦. The average relative errors computed using eq. (30) are 0.6 and
1 per cent, respectively, for Ex and Ez . Here η = 5 × 10−16 Vm−1

was chosen to calculate these errors. This implies that the developed
anisotropic 3-D FDFD code provides very accurate results also for
the shallow-water VTI case.

We now assume that the anisotropic layers (above and below the
isotropic reservoir) in the model of Fig. 7 have tilted anisotropy
with the anisotropic dip angle θ = −20◦ and strike angle φ = 0◦.
Fig. 8(a) shows the amplitude (left) and phase (right) responses
for Ex (green line) and Ez (blue line) at 0.5 Hz computed for
this shallow-water TTI model and plotted together with the above
shallow-water VTI model responses. Fig. 8(b) (green line) shows
the normalized amplitude (left) and phase difference (right) between
Ex shown in (a) and Ex computed using COMSOL software (with
the mesh displayed in Fig. 9) for the TTI model. This shows that
except for the response that is very close to the source position, the
field amplitudes differ at most by 2 per cent and the phases at most
by 1◦, and the average relative difference (computed similarly as in
the previous cases) is 1.4 per cent. The number of iterations and
run-time for the iterative solver was almost the same as for the VTI
model.

Note that we did not present the same comparison for the Ez

component for the TTI model because there was a significant dif-
ference between Ez computed using the anisotropic 3-D FDFD and
using COMSOL. We therefore tested the accuracy of COMSOL
results for the shallow-water VTI model and found that they were
quite accurate for Ex (within 1.5 per cent) but they exhibited sig-
nificant errors for Ez . This could be due to improper handling of
the discontinuity in Ez caused by a sharp conductivity contrast at
the interface between the conductive seawater and resistive forma-
tion. In order to avoid such difficulties for benchmarking results
of the future development, we include a Table A1 in Appendix
with the numerical values of Ex and Ez for the shallow-water
TTI model (plotted in Fig. 8a) along an inline receiver line (on
the seabed) with the receiver spacing of 1 km from x = −10 km
to +10 km.

Table 2 shows how the performance of the multigrid precondi-
tioned BiCGStab(2) solver depends on the system size in the case
of shallow water. Similar to the deep-water case, the solution time
increases approximately linearly with the number of unknowns that
here varies from 2.3 to 56 million. We again notice that the solver
converges slightly faster (needs fewer iterations) for smaller sys-
tems, though this dependence is pretty weak.

3-D models and titled anisotropy effect on CSEM
responses

In this section, we consider 3-D TTI earth models and compare
the developed anisotropic 3-D FDFD simulation results with the
results obtained using an anisotropic 3-D FDFD algorithm devel-
oped by Davydycheva et al. (2003). The latter algorithm is based
on the FD discretization of Maxwell’s equations on the Lebedev
grid, and the resulting linear system is solved using the spectral
Lanczos decomposition method. Recently, this algorithm has been
used by Davydycheva & Frenkel (2013) to study the effect of tilted
anisotropy on synthetic CSEM responses by using complex 3-D
TTI earth models with synclinal and anticlinal structures in a VTI
background. We will examine the same effect and reproduce the
results with our anisotropic 3-D FDFD algorithm.

Following Davydycheva & Frenkel (2013), we built three deep-
water 3-D models with: (1) only a VTI background (Fig. 10a),
(2) a TTI anticlinal structure in a VTI background (Fig. 10b) and
(3) a TTI synclinal structure in a VTI background (Fig. 10c). For
all models, the EM fields are excited by an x-oriented HED with
frequencies of 0.25, 0.5 and 1 Hz towed 30 m above the seabed.
The responses are recorded along an inline receiver line located at
the flat seabed.

Model with VTI background

Let us consider the 3-D deepwater earth model with a reservoir
in a VTI subsurface depicted in Fig. 10(a). The transverse and
normal resistivities of the background subsurface are, respectively,
ρT = 1 �m and ρN = 2 �m, while the strike and dip angles are
zero, φ = θ = 0◦. The reservoir with isotropic resistivity of 20
�m is located at 1.5 km below the seabed and has a dimension

 by guest on O
ctober 24, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1566 P. Jaysaval et al.

Figure 10. Vertical cross-section of 3-D deep-water earth models with: (a)
a reservoir in a VTI subsurface, (b) a reservoir in a TTI anticline and (c) a
TTI syncline. The overburden and background of the anticline and syncline
are the same VTI media as the subsurface of the model in (a).

of 5 × 5 × 0.1 km3. The same model but without the reservoir is
called ‘the reference VTI model’ in this paper.

Fig. 11(a) shows the absolute amplitude responses of Ex plotted
as a function of source–receiver (Tx − Rx) midpoint positions at
three Tx − Rx offsets: 4, 6 and 8 km. These responses are calcu-
lated using the developed Lebedev grid based anisotropic multigrid
solver (solid lines) and a Yee grid based VTI code (filled circles)

from Jaysaval et al. (2014). From these plots, we observe that both
methods give almost identical results. Fig. 11(b) shows normalized
amplitudes with respect to the amplitude responses for the refer-
ence VTI model. It is clear from Fig. 11(b) that the presence of
the reservoir in VTI subsurface causes significant increase in the
amplitudes (as compared to the background), specifically at longer
offsets. The absolute and normalized amplitude plots showing the
effect of the reservoir in the VTI background are visibly identical
to the ones presented in fig. 4 of Davydycheva & Frenkel (2013).

Model with TTI anticlinal structure

The 3-D deepwater earth model with a reservoir in a TTI symmetric-
anticlinal structure is shown in Fig. 10(b). The anticline is a 2-D
structure with the strike parallel to the y-axis and is symmetric with
respect to the reservoir centre. The anticline is modelled as two
bulk-tilted anisotropic structures corresponding to its two limbs
(or flanks), each having the horizontal width of 4 km in the x-
direction. The strike angle φ = 0◦ for both limbs whereas the dip
angle θ = −20◦ for the left limb and θ = 20◦ for the right limb.
The top of the anticline is located at 0.6 km below the seabed.
The overburden and background are the same VTI media as in the
previous 3-D model. The transverse and normal resistivities of the
tilted layers of both limbs are the same as in the VTI background:
ρT = 1 �m and ρN = 2 �m, respectively.

We first consider the model in Fig. 10(b) without the reservoir
and observe the effect of only the TTI anticlinal structure on the
CSEM responses. For this model, Fig. 12(a) shows the absolute
amplitudes and Fig. 12(b) the normalized amplitudes with respect
to the reference VTI model responses for Ex . It is evident that
the anticlinal structure causes a significant drop in the amplitudes
up to 40 per cent. This implies that the anticlinal structure can
mask responses of the highly resistive reservoir, which caused the
opposite effect, that is elevation in amplitudes (Fig. 11). These plots
for the anticlinal structure responses on CSEM data look visibly the
same as the ones presented in fig. 5 (bottom row) of Davydycheva
& Frenkel (2013). This match gives confidence in the accuracy of
the developed anisotropic 3-D FDFD algorithm.

Fig. 13 shows the absolute amplitudes and normalized ampli-
tudes with respect to the reference VTI model responses for Ex

for the model in Fig. 10(b), and thus illustrates a combined ef-
fect of the anticline structure and reservoir. Fig. 13(b) shows
that at longer offsets, the combined effect of the anticlinal struc-
ture and reservoir is observed in which both cause nearly simi-
lar magnitude of the amplitude deviations from the background
levels, but in the opposite directions, and hence they largely can-
cel each other. The observed effect also looks visibly the same
as the one presented in fig. 5 (top row) of Davydycheva &
Frenkel (2013).

Model with TTI synclinal structure

The 3-D deepwater earth model with a TTI symmetric-synclinal
structure is shown in Fig. 10(c). The syncline is also a 2-D struc-
ture with the strike parallel to the y-axis and is modelled as two
bulk-tilted anisotropic structures corresponding to its two limbs,
each having the horizontal width of 4 km in the x-direction.
The resistivities and strike angle of the tilted layers of both limbs
are the same as of the anticline limbs in Fig. 10(b). In the syncline,
the left limb has θ = 20◦, while the right limb has θ = −20◦. The
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Figure 11. (a) Absolute amplitude responses of Ex at 0.25, 0.5 and 1 Hz for the 3-D model with a reservoir in VTI subsurface (Fig. 10a) plotted as a function
of source–receiver (Tx − Rx) midpoint positions at three Tx − Rx offsets: 4, 6 and 8 km. They are calculated using anisotropic 3-D FDFD (solid lines) code
and a Yee grid based VTI FDFD (filled circles) code from Jaysaval et al. (2014). (b) Normalized amplitudes with respect to the amplitude responses for the
reference VTI model (the model in Fig. 10a without the reservoir).

Figure 12. (a) Absolute amplitude responses of Ex at 0.25, 0.5 and 1 Hz for the 3-D model with a TTI anticline (without the reservoir) of Fig. 10(b) calculated
using the developed anisotropic 3-D FDFD method. (b) Normalized amplitudes with respect to the amplitude responses for the reference VTI model.

overburden, background and location of the top of the syncline are
the same as of the anticline in the previous model.

Fig. 14(a) shows the absolute amplitudes and Fig. 14(b) the nor-
malized amplitudes with respect to the reference VTI model re-
sponses for Ex for the model with the syncline. It is clear that
the synclinal structure causes an elevation in the amplitude when

the source–receivers midpoint positions are above its central part.
Hence, this structural effect can be misinterpreted as a highly resis-
tive hydrocarbon reservoir if CSEM data are to be analysed using
VTI assumption of the subsurface anisotropy. The synclinal struc-
ture effect on CSEM data again looks the same as the effect observed
in fig. 6 (bottom row) of Davydycheva & Frenkel (2013).
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Figure 13. The same as Fig. 12, but for the 3-D model with a reservoir in the anticline (Fig. 10b).

Figure 14. (a) Absolute amplitude responses of Ex at 0.25, 0.5 and 1 Hz for the 3-D model with a TTI syncline of Fig. 10(c) calculated using the developed
anisotropic 3-D FDFD method. (b) Normalized amplitudes with respect to the amplitude responses for the reference VTI model.

P R E L I M I NA RY I N V E R S I O N
E X P E R I M E N T S

In the previous section, we observed the effect of anticlinal and syn-
clinal structures on the CSEM responses. It was demonstrated that
anticlinal structures could significantly reduce the inline electric
field amplitude. This effect persists even in the presence of a highly
resistive reservoir, and hence can mask the reservoir response. On
the other hand, the synclinal structure causes an increase in the
electric field amplitude when the source–receivers midpoint posi-
tions are above its central part. This effect can be misinterpreted

as a resistive anomaly due to, for example, a hydrocarbon reser-
voir if CSEM data are analysed using VTI anisotropy assumption.
A possible reason of such effects could be based on the fact that
the electric field is more sensitive to ρN if the electric field lines
align more towards the bed-normal direction and to ρT if they align
in the bed-parallel direction. Since ρN > ρT and higher resistivity
implies less attenuation or larger field amplitudes, we would ex-
pect an increase in the amplitude if the tilted layers are oriented
such that the electric field lines have larger components in the bed-
normal direction, and a decrease if the electric field lines tend to
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align in the bed-parallel direction. However, one would need to
plot the field lines in the subsurface to see whether this argumenta-
tion can explain the observed effects for the anticline and syncline
structure.

The VTI assumption is quite widespread for inversion and inter-
pretation of CSEM data. Therefore, it is interesting to study whether
the presence of anticlinal or synclinal structures would produce arte-
facts in VTI inversion results and whether they can be removed by
running a TTI inversion.

In this section, we perform a 2.5-D CSEM inversion study for the
simulation data computed for the models with anticlinal and syncli-
nal structures of Fig. 10. The inversion is based on a Gauss–Newton
optimization method and is described in Hansen & Mittet (2009).
We present inversion results obtained using both VTI inversion and
a basic TTI inversion scheme. The difference in these two schemes
is assumed to be only in the use of forward solver: the VTI inver-
sion uses a forward solver that handles VTI anisotropy, while the
TTI inversion uses a forward solver that can also handle the TTI
anisotropy of the models. The true dip θ and strike φ angles are
assumed to be known and are kept fixed in the TTI inversion. We
stress that the latter is a simplified TTI inversion scheme that, al-
though useful to illustrate the importance of dipping anisotropy via
synthetic examples, lacks the necessary functionality for inverting
general field data. Full TTI inversion is discussed further at the end
of this section but is, otherwise, beyond the scope of this paper.

In both inversions, inline electric field Ex data was used for
21 receivers, which are placed on the seabed along a line in the
central part of the model with 1 km spacing from x = −10 to
+10 km. A HED source is towed 30 m above the seabed and data
are recorded for source–receiver offsets up to 10 km. Note that the
2.5-D assumption along a receiver line in the central part of the
model holds fairly well because the reservoir is sufficiently wide
(5 km) and the anticline and syncline are indeed 2-D structures.
The forward engine used in the inversion is a 2.5-D TTI version of
the modified time-domain code presented by Maaø (2007) and is
based on the Yee grid. It is therefore very different from the forward
engine used to generate data going into inversion. These data were
also contaminated with a multiplicative noise of 1 per cent and an
additive noise of 10−16 V m−1.

Let us consider the simulation data presented in Fig. 11 for fre-
quencies 0.25 and 0.5 Hz for the model with a reservoir in the
VTI background (Fig. 10a). For these datasets, we ran only the VTI
inversion since there is no tilted anisotropy in the subsurface. The
VTI inversion was started using a half-space model with correct
background resistivities ρN = 2 �m and ρT = 1 �m. Figs 15(a)
and (b) show the final VTI inversion results, respectively, for ρN

and ρT . The inversion accurately imaged the true resistivity model
shown in Fig. 10(a): it produced a clear resistive anomaly at about
1.5 km below the seabed.

We now consider the simulation data presented in Fig. 13 for
frequencies 0.25 and 0.5 Hz for the model with a reservoir in the
anticlinal structure (Fig. 10b). We ran both VTI and TTI inversions
for these datasets using the same half-space starting model as in the
previous inversion. For TTI inversion, the values of θ and φ for the
start model were chosen to be the same as in the true model with
the anticline, while for the VTI inversions both angles were set to
zero.

Figs 16(a) and (c) show the final VTI inversion results, respec-
tively, for ρN and ρT . It is clear that the VTI inversion was not able
to image the reservoir: the inverted ρN model does not show any
anomaly. The ρT model has a weak resistive structure, but its shape
does not match that of the reservoir. As discussed before, the reason

Figure 15. VTI inversion results for simulation data at 0.25 and 0.5 Hz for
the 3-D model with a reservoir in the VTI subsurface (Fig. 10a): the reservoir
is accurately imaged in the normal (a) and transverse (b) resistivities.

for such inversion results is the combined effect of the reservoir and
anticlinal structure in which the amplitude responses remain close
to the background level (see Fig. 13). At the same time, the TTI
inversion delivered much better results, see Figs 16(b) and (d), re-
spectively, for ρN and ρT . The true resistivity model of Fig. 10(b) is
reconstructed very accurately by the TTI inversion: there is a clear
resistive anomaly in the inverted resistivity images located at about
1.5 km below the seabed. Note that the VTI inversion converged to a
smaller final misfit and used fewer iterations than the TTI inversion,
that is the convergence plots do not give any indications that the
VTI results might be wrong.

Finally, we consider the simulation data presented in Fig. 14
for frequencies 0.25 and 0.5 Hz for the model having a synclinal
structure in the subsurface (Fig. 10c), but no reservoir. We ran both
VTI and TTI inversions for these datasets using a half-space start
model with resistivities ρN = 2.1 �m and ρT = 0.9 �m, which
are 5–10 per cent different from the true background resistivities.
For TTI inversion, the start model had the true values of θ and φ,
while for VTI inversion both angles were zero. Figs 17(a) and (c)
show the final VTI inversion results, respectively, for ρN and ρT .
A highly resistive anomaly can be seen in the inverted resistivity
ρN , despite the true model not having any resistive objects. This
fictitious anomaly is the effect of synclinal structure that tends
to elevate the electric field amplitude when the source–receivers
midpoint positions are above its central part. This structural anomaly
in the inversion results can be misinterpreted as a hydrocarbon
reservoir. Figs 17(b) and (d) show the TTI inversion results, which
are consistent with the true resistivity model and show no anomalies.

It is therefore clear that using VTI inversion to image the subsur-
face resistivity in complex tectonic areas can lead to severe inversion
artefacts. We also have every indication that the application of TTI
inversion is crucial to image the subsurface resistivity correctly in
such areas. Here, we would like to mention that the TTI inversion
scheme can be developed further to allow one to invert also for θ and
φ. In practice, these angles can often be obtained from the existing
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Figure 16. VTI (left-hand panel) and TTI (right-hand panel) inversion results for normal (top panel) and transverse (bottom panel) resistivities using simulation
data at 0.25 and 0.5 Hz for the 3-D model with a reservoir in the anticline (Fig. 10b). VTI inversion failed to image the reservoir since it got masked by the
anticline response. TTI inversion, however, recovered it pretty accurately.

Figure 17. VTI (left-hand panel) and TTI (right-hand panel) inversion results for normal (top panel) and transverse (bottom panel) resistivities using simulation
data at 0.25 and 0.5 Hz for the 3-D model with a syncline (Fig. 10c). VTI inversion places a false anomaly at the middle of the syncline, while TTI inversion
does not produce any artefacts.

seismic data that show the subsurface structures. However, if this
structural information is unavailable or inaccurate, then a full TTI
inversion will be needed. Moreover in our simplified TTI inversion
scheme, the gradient and Hessian were computed from the misfit
derivatives with respect to the vertical and horizontal resistivities
(rather than ρN and ρT ), hence the model update was somewhat
inaccurate. Nevertheless, even with this imperfect model update,
the TTI inversion demonstrated a dramatic improvement over the
VTI inversion in the presence of tilted structures.

An upcoming publication (Hansen et al. 2016) presents a TTI
inversion that includes all functionality discussed above and is
extended to the 3D case. This paper further supports our con-
clusions that (i) a VTI inversion may result in imaging arti-
facts in the presence of dipping structures, and (ii) these ar-
tifacts disappear if the TTI anisotropy is taken into account.
Besides, it demonstrates that a TTI inversion using a forward
solver based on the Lebedev grid can be successfully applied
not only to synthetic but also to field data, on an example of a
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CSEM survey acquired over the Perdido fold belt in the Gulf of
Mexico.

C O N C LU S I O N S

We developed a Lebedev-grid based FDFD method for numeri-
cal modelling of CSEM fields in 3-D media with general electric
anisotropy. A BiCGStab(2) solver with a multigrid preconditioner
was used to solve the resulting system of linear equations. We ob-
served that the linear system solution time increased approximately
linearly with the number of unknowns. A synthetic inversion study
revealed that ignoring TTI anisotropy in complex 3-D models with
anticlinal and synclinal structures can lead to misleading resistivity
images. It was found that the VTI inversion of data corresponding
to a model with a reservoir in an anticline resulted in a resistivity
image showing no anomaly. On the other hand, the VTI inversion
of data corresponding to a model with a syncline resulted a false
resistive anomaly in the inverted resistivity image, despite the true
model not having any resistive bodies. By contrast, when inversion
uses the proposed TTI forward code, the produced resistivity im-
ages become consistent with the true models. We therefore believe
that the developed anisotropic 3-D FDFD modelling code along
with a proper inversion scheme will help improve imaging of the
subsurface resistivity in dipping environments, and thereby increase
drilling success rates for hydrocarbon discoveries.
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A P P E N D I X : N U M E R I C A L VA LU E S O F
T H E E M F I E L D S F O R T H E
S H A L L OW- WAT E R T T I M O D E L

In this appendix, we include a table of numerical values of the
amplitude and phase responses of Ex and Ez at 0.5 Hz for the
shallow-water TTI model. They are computed using the developed
anisotropic 3-D FDFD code on the finest grid (top row in Table 2).

Table A1. Numerical values of amplitude and phase responses of Ex and Ez at 0.5 Hz for the shallow-water TTI model of Fig. 7.

Ex Ez Ex Ez

Offsets Amplitude Amplitude Offsets Amplitude Amplitude
(Vm−1) Phase◦ (Vm−1) Phase◦ (Vm−1) Phase◦ (Vm−1) Phase◦

−10 000 3.914E–14 67.518 2.845E–15 67.818 1000 1.282E–10 47.420 3.244E–11 27.472
−9000 5.450E–14 66.316 3.927E–15 70.877 2000 1.399E–11 83.718 3.775E–12 67.661
−8000 7.747E–14 63.492 6.051E–15 73.802 3000 2.535E–12 106.539 7.261E–13 106.274
−7000 1.090E–13 59.550 1.054E–14 71.720 4000 5.389E–13 108.198 1.577E–13 140.736
−6000 1.448E–13 58.334 1.965E–14 60.107 5000 1.942E–13 75.143 2.800E–14 169.108
−5000 1.911E–13 75.111 3.688E–14 35.722 6000 1.460E–13 58.504 2.230E–15 37.812
−4000 5.326E–13 108.893 7.139E–14 − 8.452 7000 1.096E–13 59.634 7.279E–15 40.550
−3000 2.527E–12 107.160 2.082E–13 − 75.795 8000 7.782E–14 63.527 6.490E–15 54.092
−2000 1.401E–11 84.096 1.160E–12 − 134.124 9000 5.473E–14 66.328 4.786E–15 63.399
−1000 1.290E–10 47.481 1.116E–11 − 172.884 10 000 3.930E–14 67.521 3.385E–15 68.316
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