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Summary

In the past, when solving 3D magnetotelluric (MT) inverse
problems, computing the Jacobian (sensitivity matrix) at each
inversion iteration has been avoided due to the relatively large
memory and complexity requirements. We have developed a
model-space Gauss-Newton 3D marine MT inversion scheme
where the full Jacobian is computed at each inversion iter-
ation. The memory and complexity requirements are suffi-
ciently modest to allow the inversion of 3D data sets on a small
computer cluster. For a real data example from the Barents
Sea, our scheme successfully converged starting from a homo-
geneous half-space model. This is in contrast to a previous
quasi-Newton 3D MT inversion scheme we developed, which
for the same data set failed to converge starting from homo-
geneous half-space models. In addition, testing revealed no-
ticeable improvements in terms of the required number of in-
version iterations for convergence and receiver-imprint related
artefacts and when going from a quasi-Newton based scheme
to our new Gauss-Newton inversion scheme.

Introduction

Magnetotelluric (MT) data can be a valuable complement to
seismic data in geologic environments where seismic imaging
is challenging; e.g. below highly heterogeneous basalt layers
or in the presence of complex salt structures. In such situa-
tions, resistivity models obtained via MT inversion can for ex-
ample be used to improve velocity models for seismic process-
ing or in workflows for joint interpretation (Hovertsen et al.,
1998; Key et al., 2006; Avdeeva et al., 2012).

Consider the problem of inverting an MT data set consist-
ing of N data points assuming the earth has been divided
into M rectangular cells with conductivities σ1, . . . ,σM . As-
sembling the problem’s N ×M Jacobian (or sensitivity) ma-
trix J comes at a relatively large computational cost. As a
consequence, in the literature on MT inversion written dur-
ing the last few decades, significant attention has been devoted
to gradient-type inversion schemes which altogether avoid as-
sembling the Jacobian such the as the conjugate gradient (CG)
method (Mackie et al., 1993a), the non-linear conjugate gra-
dient (NLCG) method (Newman and Alumbaugh, 2000) and
quasi-Newton methods (Avdeev and Avdeeva, 2009; de la
Kethulle de Ryhove and Mittet, 2014). For inversion schemes
based on the Gauss-Newton method, which do require knowl-
edge of the Jacobian, focus has been on computational com-
plexity reductions. Sasaki (2004) achieves this via approxi-
mations, whereas Siripurnvaraporn (2005) replaces the model-
space M×M system of linear normal equations by a data-space
N×N system of linear normal equations. The rationale behind
this is that in 3D we typically have that N�M.

We would like to put forward the idea of performing 3D ma-
rine MT inversion using a model-space Gauss-Newton scheme
where the full Jacobian is computed at each inversion itera-
tion. The motivation is that the Gauss-Newton approximation

to the data Hessian J†J+ c.c. is expected to be of higher qual-
ity than that which can be obtained by gradient-type schemes.
This can be intuitively understood by noting that the former
is based on partial derivatives of each data point with respect
to each model parameter (N×M quantities in total), whereas
in the latter, all that is available to obtain an approximation to
the data Hessian is the history of M-dimensional gradient vec-
tors from each inversion iteration. As a result, gradient-type
inversion schemes often require a large number of iterations
to converge – which has led researchers to consider precondi-
tioning schemes to remedy the situation (Newman and Boggs,
2004; Plessix and Mulder, 2008).

If the Gauss-Newton scheme is implemented with care, the
memory and complexity requirements are sufficiently modest
to allow the inversion of 3D marine MT data sets on a small
computer cluster. We find computing the Jacobian at each in-
version iteration well worth the computational expense. In-
deed, in comparison to our former quasi-Newton scheme based
on the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) update method (Byrd et al., 1995; de la Kethulle de
Ryhove and Mittet, 2014), testing indicates that the proposed
Gauss-Newton scheme has at least three advantages: reduced
start model dependence, reduced number of iterations for con-
vergence without any need for preconditioning, and a notice-
able reduction of shallow receiver-imprint related artefacts.

The remainder of this paper is organized as follows: we start
by presenting our Gauss-Newton 3D marine MT inversion al-
gorithm. Some inversion results are discussed thereafter before
drawing some concluding remarks.

Efficient Gauss-Newton 3D marine MT inversion

Let the earth be divided into M isotropic cells, let each cell
be assigned a conductivity value σi, and let m be a vector of
length M containing these values. Our inversion scheme em-
ploys a Gauss-Newton algorithm (Nocedal and Wright, 1999)
to minimize the cost function

ε(m) = εdata(m)+λεreg(m), (1)

where λ ∈ R+ is the Tikhonov regularization parameter, εreg
is a regularization term, and the data cost term reads

εdata(m) =
∑

i j,ω,n

∣∣∣Wi j,ω,n(Zobs
i j,ω,n−Zsyn

i j,ω,n(m))
∣∣∣
2
. (2)

Here, the indices i, j ∈ {x,y} denote components of the 2× 2
impedance tensor Z, ω denotes angular frequency, n is a site
index, Wi j,ω,n is a data weight, and the superscripts obs and syn
respectively denote observed and forward-modelled synthetic
data. The regularization term used in this work is a quasi-
Lp norm (p ∈ {1,2}) of the horizontal and vertical derivatives
of the model parameters m, and is based on an extension to
three dimensions and general p of the regularization scheme
presented by Hansen and Mittet (2009). Different weighting
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Full-Jacobian Gauss-Newton 3D marine MT inversion

coefficients αh,αv can be used for the horizontal and vertical
derivatives. The value of the Tikhonov parameter is also con-
trolled as described by Hansen and Mittet (2009).

We now describe our implementation of the Gauss-Newton
scheme. Most of the points discussed below need to be care-
fully dealt with in order to obtain an efficient implementation.

Forward modelling is performed using the finite-difference
time-domain (FDTD) approach presented by de la Kethulle de
Ryhove and Mittet (2014). For a specific source configura-
tion, it has the advantage of allowing the computation of the
electromagnetic field unknowns at all frequencies of interest
in a single simulation. In comparison to modelling based on
a frequency-domain approach (Mackie et al., 1993b; Smith,
1996), where for a specific source configuration a new for-
ward modelling job needs to be run for each frequency of inter-
est, this in principle allows to reduce the number of modelling
jobs by a factor n f (number of frequencies). However, as for
each FDTD job the modelling time is roughly proportional to
Nu×

√
Tmax, with Tmax the longest period one wishes to com-

pute electromagnetic field responses for and Nu the number
of electromagnetic field unknowns, we find it useful to di-
vide the periods of interest into 2-3 groups and run separate
modelling jobs for each group. If, for each group, the finite-
difference (FD) stencils are gradually coarsened as the maxi-
mum period Tmax in the group increases, we find that it usu-
ally is possible to achieve computational savings in spite of
the increase in the total number of jobs. For example, if one
wishes to produce modelling results for periods in the range
1.5s < T < 375s, splitting the period range into two groups
(G1 with periods such that 1.5s < T ≤ 25s, and G2 with peri-
ods such that 25s < T ≤ 375s) and using an FD stencil that is
four times coarser for the long-period group gives a total mod-
elling time that is roughly proportional to Nu

√
25+ 1

4 Nu
√

375,
whereas the total modelling time if one produces results for all
periods at once using the finer stencil would be roughly pro-
portional to Nu

√
375. Here the computational complexity can

thus be reduced by a factor ∼ (
√

375/4+25)/
√

375≈ 1.97.

It is essential to compute the sensitivities ∂Zsyn
i j,ω,n/∂σm us-

ing an adjoint approach (McGillivray and Oldenburg, 1990;
Avdeev, 2005) to restrict the number of forward modelling
jobs. The MT impedance is defined in terms of four field com-
ponents (Ex, Ey, Hx, Hy). For each site and frequency group,
the Jacobian can hence be constructed based on the forward
modelling results for four different sources. In addition, for
each frequency group, forward modelling for two plane-wave
MT sources is required to compute the direct fields. This gives
a total of 4×(number of receivers)+2 forward modelling jobs
for each frequency group to assemble the Jacobian.

In order to avoid running four different forward modelling
jobs per frequency group at each site xr, it is tempting to use
the superposition principle to construct linear combinations
αxJx+αyJy+βxKx+βyKy of x and y-oriented unit electric and
magnetic dipole sources, where the coefficients αx,αy,βx,βy
are a function of frequency and depend on the site’s impedance
misfits ∆Zi j(xr,ω). This idea was used for computing gra-
dients in our former quasi-Newton inversion scheme (de la
Kethulle de Ryhove and Mittet, 2014). However, it comes

with two disadvantages. First, the forward modelling jobs
for the direct fields need to be finished in order to determine
αx,αy,βx,βy for each site and frequency before the remain-
ing adjoint modelling jobs can start. This prevents parallelism
and introduces delays in wall clock time. Second, generating
fictitious time-domain sources for our FDTD algorithm with
spectra determined by the values of αx,αy,βx,βy at each fre-
quency is a numerically difficult problem because the trans-
form from frequency to fictitious time is non-unique (de Hoop,
1996). This limits the number of periods in each group to a
maximum of five (de la Kethulle de Ryhove and Mittet, 2014)
and may lead to accuracy issues if the fictitious time-domain
sources are not generated with care. In our implementation
of the Gauss-Newton scheme, we therefore choose not to con-
struct such linear combinations.

We now discuss the assembly of the Jacobian once all mod-
elling jobs have been successfully executed. The Jacobian is
a matrix with N (number of data points) rows and M (number
of unknowns) columns. For a reasonably-sized 3D marine MT
survey with say 100 receivers and 20 periods, inverting all four
impedance tensor components gives N = 8000 data points. Fit-
for-purpose 3D discretizations of the earth used in our experi-
ments contained in the region of M≈ 500000 unknowns corre-
sponding to the isotropic conductivities of M rectangular cells.
Following standard practice, these discretizations were finer
close to the region where the receivers were deployed, and be-
came coarser as one moved away from this region horizontally
or in depth. In principle, these earth discretizations need not be
related to the FD stencils used in the forward modelling though
for accuracy reasons it is advisable to try to have at least one
Yee-grid node per cell edge.

With M = 500000 and N = 8000, the memory requirement for
storing the Jacobian in complex double precision is ∼ 60GB.
In order to assemble the Jacobian efficiently, and thereafter
solve the system of linear normal equations to find the search
direction, we find it important to parallelize the task with the
help of a Message Passing Interface (MPI) implementation.

This is done as follows. A number of compute nodes is set
aside to assemble the Jacobian. Together, these nodes must
have sufficient memory for distributed storage of the Jacobian.
A number of MPI process np is chosen. The set of receivers
is then partitioned into np disjoint groups. For efficient load
balancing, the number of receivers per group should vary as
little as possible. Each receiver group is assigned to a specific
MPI process. The Jacobian assembly can then start. Each MPI
process assembles the Jacobian rows corresponding to the data
points belonging to the receivers it has been assigned. For this
purpose, in addition to the direct fields, each MPI process only
needs to know the adjoint fields corresponding to the receivers
it has been assigned.

The system of linear equations ((J†J+c.c)+λHreg)∆m =−g
now needs to be solved for ∆m in order to obtain the search
direction, with Hreg the Hessian of εreg(m) and the gradient
g = (∂ε/∂σ1, · · · ,∂ε/∂σM). Since it is prohibitively expen-
sive to form the M×M matrix J†J, we use a conjugate gradient
(CG) solver (Nocedal and Wright, 1999; Avdeev, 2005) with
Jacobi preconditioning for this purpose. At each CG iteration,

Page 993© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

10
/2

6/
16

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Full-Jacobian Gauss-Newton 3D marine MT inversion

two matrix-vector products y= J x and z= J†y need to be eval-
uated. In our implementation, each MPI process takes care of
the rows of J it has assembled. The partial products computed
by each MPI process are simply summed at the end to calcu-
late y = J x or z = J†y. The computation of Hreg∆m is simpler
and is not discussed further here due to space limitations.

Finally, once ∆m has been found, a line search based on a
backtracking approach (Nocedal and Wright, 1999) is carried
out. Since only the value of the cost function ε(m) needs to
be evaluated at each line search iteration, this requires only
two modelling jobs per frequency group to compute the direct
fields. The associated computational expense is hence small.

Inversion examples

The Gauss-Newton algorithm presented above was applied to
a 2010 data set from the western Barents Sea. See (de la
Kethulle de Ryhove and Mittet, 2014) for a description of
this data set together with inversion results obtained using our
former quasi-Newton L-BFGS scheme. The MT data used
in the inversion consist of impedance tensors for 17 periods
per receiver ranging from 1.45s to 375s. We had data up to
T ≈ 1000s, though since only depths 0km ≤ z ≤ 10km were
of interest to us the longest periods were excluded. Initial
inversion tests were carried out with 75 of the 80 deployed
receivers as in (de la Kethulle de Ryhove and Mittet, 2014).
However, the inversion struggled to achieve a good data fit for
three of these 75 receivers. Examining the observed data re-
vealed that in comparison to their neighbours these receivers
displayed anomalously high apparent resistivities for one of
the off-diagonal modes, which did not seem physical to us.
These receivers were consequently excluded from later inver-
sion runs. The results presented in this section are for 72 of the
80 deployed receivers. This gives N = 4896 data points.

The north-east-depth dimensions of the 3D inversion resistiv-
ity model were 82×62×20km. This volume was divided into
M = 536210 rectangular cells. The start model consisted of a
3.3S/m water layer and a homogeneous formation layer with
conductivity 0.25S/m. The 17 periods were divided into one
short-period group (9 periods in the range 1.45s to 23.4s) and
one long-period group (8 periods in the range 32.8s to 375s).
This leads to a total of 580 forward modelling jobs per Gauss-
Newton iteration. The FD stencil for the long-period group
was four times coarser than for the short-period group.

The inversion converged in eleven Gauss-Newton iterations to
a root mean square (RMS) data misfit of 1.46, with the weights
in equation (2) set to Wi j,ω,n = 3% |Zobs

i j,ω,n| for off-diagonal
impedance tensor components, and respectively W 2

xx,ω,n =

10%W 2
xy,ω,n and W 2

yy,ω,n = 10%W 2
yx,ω,n for the diagonal com-

ponents. These eleven Gauss-Newton iterations can be com-
pared to 196 iterations for our former quasi-Newton scheme
which, in addition, failed to converge starting from homoge-
neous half-space models. The data, regularization, and total
RMS misfits as a function of the iteration number are displayed
in Figure 1.

The inversion was run on a computer cluster consisting of a
combination of nodes with dual Intel Xeon E5-2650 2.6GHz

Figure 1: Data, regularization, and total RMS misfits as a func-
tion of the iteration number.

CPUs, nodes with dual Intel Xeon E5-2660 2.2GHz CPUs,
and nodes with dual Intel Xeon E5-2680 2.7GHz CPUs. All
nodes had 16 processors and either 64GB or 128GB mem-
ory. For the first and tenth Gauss-Newton iterations, the aver-
age forward modelling runtimes were of respectively 5.5 and
30.1min. The increase in average runtime from the first to the
tenth iteration is due to the increase in maximum resistivity
from 4Ωm for the start model to ∼ 100Ωm at the tenth iter-
ation (the runtime of our FDTD forward modelling algorithm
is proportional to the square root of the maximum resistivity
in the input earth model (de la Kethulle de Ryhove and Mit-
tet, 2014)). For both the first and tenth Gauss-Newton itera-
tions, it took approximately 9min. to assemble the Jacobian
using two nodes and four MPI processes per node. Solving
the system of linear normal equations with these same com-
pute resources thereafter took respectively 401 CG iterations
and ∼ 19min. for the first Gauss-Newton iteration, and 997
CG iterations and ∼ 48min. for the tenth Gauss-Newton iter-
ation. The CG solver termination criterion was a reduction in
the 2-norm of the preconditioned residual of 10−5. We believe
this may be stricter than necessary, though additional testing is
needed to confirm this.

The central part of the resistivity model the iversion con-
verged to is shown in Figure 2. The resistivity remained below
∼ 1.3Ωm below the 10-km investigation depth. As with our
former quasi-Newton inversion, three resistive bodies, marked
A, B and C in Figure 2, were identified. Resistive body A,
interpreted to be a salt layer, extended to the east and south
boundaries of the earth model in the current inversion, but in
our former inversion had a maximum extension of 9km in the
south-north direction and 13km in the east-west direction. The
larger horizontal extent of this body in the current inversion
may be due to the horizontal regularization. The maximum
depth of this body was ∼ 7.5km in the current inversion and
∼ 6.5km in our former inversion. Resistive body B, inter-
preted to be salt, had a maximum depth of ∼ 6.5km in the
current inversion and ∼ 5.5km in our former quasi-Newton
inversion. Differences in the geometry of this body were ob-
served between the two inversions. This was also the case for
the shallow object marked C.

In addition to the inversion discussed above, a number of inver-
sions on the same data set with different regularization settings
were run. Among others we observed that object A, which
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Full-Jacobian Gauss-Newton 3D marine MT inversion

Figure 2: Final resistivity model. As with our former quasi-Newton inversion, three resistive bodies (A, B and C) were identified.

we would not expect to affect short-period data, did not ap-
pear in over-regularized inversions; and that detailed object
geometries, in particular that of object B, were dependent on
the relative weighting of the horizontal and vertical derivatives
in the regularization scheme. This underlines the importance
of proper regularization tuning. A test plan involving synthetic
inversions in different scenarios is one way of achieving this.

In order to examine receiver-imprint related inversion arte-
facts, synthetic inversion tests where deep resistive targets had
to be recovered starting from a half-space with the correct
2Ωm background resistivity were carried out. Vertical cross-
sections extending to depths z = 1.5km for the final models
obtained with a quasi-Newton L-BFGS inversion similar to
that presented in (de la Kethulle de Ryhove and Mittet, 2014)
and the Gauss-Newton inversion scheme discussed in this pa-
per are shown in Figure 3. Receiver-imprint related artefacts
are clearly less visible in the model obtained with the Gauss-
Newton scheme. This can be at least partly understood by not-
ing the following: the first step taken by the L-BFGS scheme
will be in the steepest descent direction, and if the start model
minimizes the regularization term of the cost function, the reg-
ularization gradient vanishes as long as εreg(m) is a twice dif-
ferentiable function of m, which is usually the case. Hence
only the data misfit gradient steers the L-BFGS scheme at the
first iteration. This is different for the Gauss-Newton scheme
because Hreg is non-zero even in the above situation. As a
result, the regularization term will play a role in the determi-
nation of the Gauss-Newton direction at the first iteration and
penalize updates with sharp contrasts.

Conclusions

We have developed a Gauss-Newton 3D marine MT inversion
scheme where the full Jacobian is computed at each inversion
iteration. Its computational requirements allow the inversion

Figure 3: Vertical cross-sections of the final resistivity models
obtained with the synthetic inversions described in the text.
The cross-sections extend to depths z = 1.5km.

of 3D data sets on a small computer cluster. Although as-
sembling the Jacobian at each iteration comes at a relatively
large cost, we find this is clearly worth the effort. Indeed,
synthetic and real inversion tests indicate that, in compari-
son to gradient-based quasi-Newton inversion algorithms, the
proposed scheme has at least three advantages: reduced start
model dependence, reduced number of iterations for conver-
gence without any need for preconditioning, and a noticeable
reduction of shallow receiver-imprint related artefacts.
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