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SUMMARY
Use of controlled-source electromagnetics in increasingly challenging exploration applications has led to
the requirement for more powerful 3D inversion approaches. For 3D cases, application of Gauss-Newton
algorithms is limited by the computational cost required to compute the Hessian matrix and solve for the
model update. We consider a low-rank approximation to the Hessian matrix, which has the potential to
reduce the numerical complexity drastically. The scheme is based on phase encoding groups of sources
instead of incorporating sources individually. We demonstrate the feasibility of the approach by numerical
examples and present an analysis of the errors introduced by the approximation.
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 Introduction

The application of 3D controlled-source electromagnetics (CSEM) to image and characterize targets

in increasingly challenging environments has motivated the development of more powerful inversion

methods. The target response often represents a small perturbation of the measured signal response from

complex background resistivity variations. When the geological understanding is limited, we require the

3D CSEM inversion to reconstruct from the data not only the potential hydrocarbon reservoir target, but

also an accurate representation of the background resistivity variation and the structural framework.

The Gauss–Newton optimization algorithm is known to work well for inversion of CSEM data when

assumptions of lower spatial dimensionality can be applied (Abubakar et al., 2006; Mittet et al., 2007).

When a 3D model description is required, and when the input from state-of-the-art 3D acquisition is to

be used, the numerical complexity of the Gauss–Newton algorithm can be very large (Abubakar et al.,

2009; Sasaki, 2011). The large size of the Jacobian and Hessian matrices, as well as the number of 3D

forward simulations can be a severe limitation. This has been addressed by several authors considering

schemes to reduce the numerical cost by e.g. model reparameterization (Lin et al., 2013), and input data

decimation (Schwarzbach and Haber, 2011). Gradient-based approaches to 3D CSEM inversion, like

conjugate-gradient and quasi-Newton (Mackie et al., 2007; Støren et al., 2008), are less computationally

demanding, and are now commonly used. However, these approaches are most accurate when a good

background model has been built. The construction of the background model can be a demanding task

if the geology is complex and if little other geophysical data is available.

In this paper we present a Hessian approximation based on the superposition of phase-encoded sources.

This approach leads to a low-rank representation of the Hessian matrix, and alleviates the computational

cost of constructing and storing this matrix as well as the solution of the Gauss–Newton equation. We

show by numerical examples how the approximation is able to capture important features of the Hessian,

at a numerical cost that is up to two orders of magnitude smaller than the exact calculation.

Gauss–Newton optimization and Hessian approximation

The inversion of CSEM data is formulated as an optimization problem σ = argminσ∈M ε(σ), where σ
is a 3D conductivity model in the set M of models compatible with a priori information, and ε is the

cost function. The cost function includes both regularization terms and a data misfit term,

εData (σ) = ∑
F,i, f ,rrx,rtx

∣∣W F
i (rrx|rtx, f )ΔFi (rrx|rtx, f ;σ)

∣∣2 . (1)

Here ΔF = FObs −FSynth represents the difference between observed and synthetic fields (F = E for

electric and F =H for magnetic), W is a datum weight (typically inverse measurement uncertainty), i are

the spatial components (x,y) of the field recordings, f are the frequencies, rrx is a receiver position, and

rtx is a source position. The shorthand notation κ = (F, i, f ,rrx,rtx) will uniquely label a measurement.

The non-linear optimization problem is solved by iteratively updating the conductivity model. The

Gauss–Newton equation for model updates Δσ is H Δσ = −g where H = J†J + c.c. is the Hessian

matrix constructed from the Jacobian matrix J, and g = ∑κ WκΔF∗
κ (J)κ + c.c. is the model parameter

gradient of the cost function. The c.c. denotes complex conjugated term. The Jacobian is a complex

N ×M matrix where N is the number of data samples, and M is the number of model parameters. The

Jacobian can be constructed from Green functions,

(J)κ,r =W F
i (rrx|rtx, f )∑

m
GF,J

i,m (rrx|r, f )∑
n

GE,J
m,n (r|rtx, f )Jn (rtx, f ) , (2)

where r is the position in the model, GF,J
m,n denotes the Green function for field F, component m, from

a unit electric current source in direction n, and Jn is a component of the source (m,n = x,y,z). It
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 is straightforward to generalize the expression in (2) to the anisotropic and discrete case. From this

expression, we see that explicit construction of the Jacobian requires the Green function associated with

every source position rtx to be calculated. The Hessian matrix is a real M ×M matrix, with rank given

by the number of rows in the Jacobian, i.e. rank(H) = 2 NF Nf Ni Nrx Ntx (Grayver et al., 2013). Here,

and throughout, the notation Na denotes the number of unique elements of index a. For a state-of-the-art

3D CSEM survey and with a realistic model representation, the numerical complexity involved with

the construction of H and the solution for the model update can be very large. The number of forward

solutions required can be of order 104, and the dense linear system for Δσ can be of size 106 ×106.

In this paper, we consider a low-rank approximation where sources in (2) are combined after encoding

with a random phase factor, i.e. we construct ∑κ∈g eiφκ (J)κ for a group of sources g associated with a

receiver channel, and where φκ are uniformly distributed random numbers in the interval [0, 2π). The

number of source groups Ng and the grouping scheme will be discussed below. Following this approach,

the factors of J associated with the sources in a source group and a specific receiver channel can be

calculated from a single simultaneous-source (super-shot) forward solution of the Maxwell equations.

We denote the output of such simulation,

G̃F
i,m,rrx,g (r, f ) = ∑

n,rtx∈g
W F

i (rrx|rtx, f )Jn (rtx, f )eiφF,i,rtx, f GE,J
m,n (r|rtx, f ) . (3)

The approximate Hessian matrix H̃ following from the Jacobian constructed in this approach becomes,

H̃(r,r′) = ∑
F,i, f ,rrx,g

[
∑
m

GF,J
i,m (rrx|r, f ) G̃F

i,m,rrx,g (r, f )
]
×
[
∑
n

GF,J
i,n

(
rrx

∣∣r′, f
)

G̃F
i,n,rrx,g

(
r′, f

)]∗
+ c.c. (4)

The rank of the approximation is given by the number of terms in the outer sum, i.e. rank(H̃) =
2 NF Ni Nf Nrx Ng. Note that both the rank and the storage requirement to construct H̃ scale by Ng

instead of Ntx as for H. The reduction in numerical complexity from the approximation is described

below, but it is realistic that the ratio Ntx/Ng can be of order 10− 100 meaning a dramatic decrease

in complexity. Consider now the errors introduced by the approximation to the Hessian in (4).Due to

the summation over source positions in G̃, the approximation will include terms involving two different

source positions. Such terms are not present in H, see Figure 1.

Figure 1 (a) Diagram representing terms included in the Hessian H. Arrows correspond
to Green functions, with reverse directions indicating complex conjugation. Current factors
W F

i (rrx|rtx, f )Jn (rtx, f )eiφF,i,rtx, f are associated with source positions. (b) Diagram representing the ad-
ditional cross-talk terms introduced into H̃, where two separate source positions give a contribution.

We refer to these errors as “cross-talk” and denote their contribution η , such that H̃ = H+ η . The

source-diagonal terms, involving only a single rtx, are the terms that make up the exact Gauss–Newton

Hessian H. The random phase-factors eiφκ introduced in (3) will cancel in the source-diagonal terms

since they enter as an absolute value. However, for the cross-talk terms, where two different source

points are involved, the phase factors remain and act to suppress the cross-talk in the outer summation

in (4). This is similar to applications of phase encoding in seismic modeling, see e.g. Bansal et al.

(2013). The number of source-diagonal terms contributing to H is proportional to Ntx. The number

of cross-talk terms contributing to η will scale with the number of sources as N2
tx (assuming Ng = 1).

However, the magnitude |η | should scale linearly in Ntx due to the random phase of the cross-talk terms

from the eiφκ factors, and by analogy to a Gaussian random walk. Further, the number of significant
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 terms contributing to η should be less than N2
tx due to the exponential decay of the Green functions for

cross-talk terms where |rtx − r′tx| is large. Thus the magnitude |η | scales by the number of sources in

a source group as (Ntx)
α with α < 1. In summary, the asymptotic behavior of the approximation is

feasible since limNtx→∞ |η |/|H| = 0. We can reduce the error of the approximation by increasing the

number of source groups Ng. In fact, using the maximum Ng = Ntx makes H̃ identical to H, but in this

case there is no reduction in computational cost. We can optimize the approximation by constructing

the source groups with maximum separation between the spatial locations of sources. In this case, each

cross-talk contribution shown in Figure 1 (b) will be smaller compared to a source-diagonal contribution

in Figure 1 (a) by the decay of the Green functions over distance |rtx − r′tx|.

The approximation H̃ to the Hessian will be better for some parts of the matrix than others. A good im-

plementation into an inverse scheme can use the approximation where the errors are below tolerance, and

use the Gauss–Newton Hessian when accuracy is critical. In a standard Gauss–Newton implementation,

the number of forward computations, Nsim, is mainly driven by the number of source Green functions

needed, that is Nsim ∼ Ntx. Likewise, the memory needed to store the Jacobian matrix scales linearly

with Ntx. When the Hessian matrix is built using source groups and following the approach described

above, both the number of simulations and the memory requirements for the Jacobian scale as Ng instead

of Ntx. The low-rank approximation allows a Hessian representation using considerably less memory

when Ng is small by storing the quantities in square brackets in (4). In addition to the savings on number

of forward solutions and memory requirements, we expect that solving the Gauss–Newton equation can

be done very efficiently by exploiting the low-rank property of the Hessian matrix in (4).

Results

In this section we show model updates computed for an example CSEM survey, using both the Gauss–

Newton update and the approximation scheme described above. In the example, the inversion parame-

terization is a regular grid with cell size 200 m × 200 m × 100 m and the total number of cells is 28275.

The survey layout is detailed in Figure 2 with a total of 10500 data samples.

(a) z = 1500 m (b) y = 3000 m

Figure 2 True model and survey layout for the example CSEM survey. The water conductivity is 4 S/m,
and the water depth is 500 m. A resistor is located at 1.5 km depth, with dimensions 3 km × 2 km ×
0.1 km, and conductivity 0.02 S/m. The formation conductivity is 1 S/m. There are 5 towlines and 25
receivers recording Ex and Ey at 0.25 and 1.0 Hz. The source distance is 300 m along towlines.

(a) H̃ Δσ =−g (b) H Δσ =−g (c) Δσ =−g
Figure 3 Model updates Δσ at y = 3000 m.

The Gauss–Newton equation was solved using a conjugate gradient method with a small stabilizer and

an initial model with the correct background conductivity. Figure 3 shows the solution for three cases

using (a) the approximate Hessian matrix H̃, (b) the exact Gauss–Newton Hessian matrix H, and (c)
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 steepest descent (H → 1). The approximate Hessian was obtained using one source group per receiver

channel (Ng = 1). Comparing (a) with (b) and (c), we see that the solution to the Gauss–Newton equation

with the approximate Hessian matrix is qualitatively more similar to a solution with the exact Hessian

matrix than a steepest descent solution. In particular, much of the sensitivity information in H remains

in H̃ as seen at depth. Table 1 shows key characteristics for the computational cost of inversion for the

example survey as well as for a larger, more realistically sized 3D CSEM survey. As is shown in the

table, the number of forward simulations is reduced with a factor 2.6, however in a larger survey the

reduction in computational cost can be much larger while keeping the error at the same level.

Case Numerical cost Standard GN Approximate H̃ Ratio

Example Forward simulations 260 100 2.6

Example Jacobian memory 4.4 GB 43.1 MB 105

Realistic Forward simulations 11800 1000 11.8

Realistic Jacobian memory 127.4 TB 68.7 GB 1900

Table 1 Computational cost comparison for exact Gauss–Newton and the approximation scheme, for the
simple example case shown in Figures 2 and 3, as well as a large-scale realistic survey.

The data for the realistic survey in Table 1 were obtained from a survey area of 30 km×20 km×4 km,

with 10 towlines at 2 km line separation and a source distance of 100 m along the towlines. In total

we obtain 5700 source positions recorded at 100 receiver sites, measuring the horizontal components

of electric and magnetic fields at 4 frequencies. The same discretization as in the smaller example is

assumed, for two anisotropy components. The survey has a total of 14.59 million data samples. Using

three source groups (Ng = 3) we keep the simultaneous source separation at 300 m such as in the smaller

example survey discussed above. The size of the Hessian will be 2.6 TB, but the Jacobian representation

in the approximation scheme offers a 40-fold reduction in size. The approximation error, η , could be

reduced by increasing the number of source groups, but the computational cost would increase.

Conclusions and acknowledgement

We have described a low-rank approximation to the Hessian for Gauss–Newton 3D inversion of CSEM

data. The scheme is based on superposition of phase-encoded sources, and we have demonstrated the

potential to significantly reduce both the number of forward simulations and memory requirements for

inversion. We thank Research Council of Norway (PETROMAKS project 217223) and EMGS ASA for

supporting this work.
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