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ABSTRACT

We have developed an approximation to the Hessian for
inversion of 3D controlled source electromagnetic data. Our
approach can considerably reduce the numerical complexity
in terms of the number of forward solutions as well as the
size and complexity of the calculations required to compute
the update direction from the Gauss-Newton equation. The
approach makes use of “supershots,” in which several source
positions are combined for simultaneous-source simula-
tions. The resulting Hessian can be described as a low-rank
approximation to the Gauss-Newton Hessian. The structure
of the approximate Hessian facilitates a matrix-free direct
solver for the Gauss-Newton equation, and the reduced
memory complexity allows the use of a large number of un-
knowns. We studied the crosstalk introduced in the approxi-
mation, and we determined how the dissipative nature of
marine electromagnetic field propagation reduces the impact
of this noise. Inversion results from recent field data
demonstrated the numerical and practical feasibility of the
approach.

INTRODUCTION

The marine controlled-source electromagnetic (CSEM) method
is an efficient tool for offshore hydrocarbon exploration with the
potential to significantly increase the drilling success rate (Hest-
hammer et al., 2010). Moreover, the technology has been demon-
strated to be effective also in field appraisal (Morten et al., 2011) as
well as structural imaging applications (Hoversten et al., 2013;
Morten et al., 2013). CSEM data imaging today is based on
full-waveform inversion approaches for all of these applications.
Using inversion, interpretation challenges related to background

complexity and hydrocarbon reservoir variations can be addressed
by depth imaging and from quantitative resistivity information in
the resulting subsurface models.
State-of-the-art 3D CSEM acquisition offers significant advan-

tages by allowing imaging of lateral variations and also targets,
which could be situated between source towlines. If subsurface re-
sistors not related to hydrocarbons are present, then the resolution of
interpretation ambiguity is often dependent on understanding the
geometry in 3D. Our experience with CSEM data inversion sug-
gests that Hessian-based optimization schemes can often be suc-
cessful for imaging the 3D geometry of a hydrocarbon reservoir
and other resistive structure that may be present, starting from a
simple initial guess model. However, the Hessian-based inversion
strategies that were originally devised and successfully applied for
lower dimensional analysis using a 2D assumption on model geom-
etry (Abubakar et al., 2006, 2009; Li and Key, 2007; Mittet et al.,
2007), will lead to very large computational complexity when
scaled up for 3D applications.
One of the numerical complexities of inversion approaches that

rely on second-derivative information, such as Gauss-Newton, Lev-
enberg-Marquard, or Occam (de Groot-Hedlin and Constable,
1990), arises due to the size of memory needed to store and carry
out computations with the Hessian matrix. The number of param-
eters required to describe the subsurface region covered by a 3D
CSEM survey can be of the order of N ∼ 106, and the size of
the Hessian will scale asN2 making the matrix impractical to handle
even on large high-performance computer systems. Li et al. (2011,
2013) introduce a model compression method that can significantly
reduce the number of parameters for a 3D Gauss-Newton inversion
approach. In this paper, we will present a method combining a
low-rank approximation of the Hessian combined with a direct
solver, so that the number of inversion parameters is no longer a
bottleneck.
A second complication for inversion algorithms based on a

Gauss-Newton optimization is the large number of forward simu-
lations needed. To construct the Hessian matrix, it is necessary to
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compute the Green’s functions for the individual source and
receiver sensors of the survey. For a large 3D CSEM survey, the
number of independent source positions can be very large, often
in the order of Ntx ∼ 105. The resulting numerical computational
load is formidable considering that 3D modeling is required.
Grayver et al. (2013) study the use of a direct solver in forward
modeling, which has a very gentle scaling with respect to the num-
ber of independent source positions that need to be evaluated once
the system matrix factorization has been achieved. However, the
memory requirement for the matrix factorization can be very large
for an industry-scale 3D CSEM survey.
To cope with the above-mentioned numerical complexity of 3D

CSEM inversion, descent-based inversion approaches that do not
require the full-Hessian computation have been used (see, e.g.,
Mackie et al., 2007; Zhdanov et al., 2007; Støren et al., 2008). How-
ever, these approaches typically require significant manual work to
ensure that the initial model reflects the large-scale features of the
background geology to achieve acceptable convergence rates and
feasible models (Loke and Dahlin, 2002). Higher order methods,
e.g., Gauss-Newton, typically require less information in the initial
models to achieve these two goals. Nocedal and Wright (2006)
show convergence ratios of different optimization methods, and
Pratt et al. (1998) show seismic waveform inversions comparing
Gauss-Newton and full-Newton methods.
In this paper, we introduce an inversion scheme based on the

Gauss-Newton algorithm, but with a significantly reduced numeri-
cal complexity. We make use of a “supershot” technique, where the
superposition of several Green’s functions is computed in single
modeling jobs with simultaneously active sources. These constructs
can be used to reduce the numerical load from the simulation of
Green’s functions and storage of the Jacobian for marine CSEM
inversion. The scheme is effective when the number of source po-
sitions is much larger than the number of receiver positions, or vice
versa. The use of such supershots has previously been introduced in
seismic data imaging. In seismic prestack wave-equation migration,
the use of source encoding techniques has been demonstrated to
reduce the crosstalk noise following from the processing of simul-
taneously active sources (Morton and Ober, 1998; Jing et al., 2000;
Romero et al., 2000). Such encoding techniques have also been
used in seismic full-waveform inversion (see, e.g., Krebs et al.,
2009; Boonyasiriwat and Schuster, 2010; Ben-Hadj-Ali et al.,
2011; Bansal et al., 2013; Schiemenz and Igel, 2013). In this work,
we will consider a related phase encoding technique for electromag-
netic data inversion. The approach based on supershots can be par-
ticularly well-suited for CSEM data due to the strong attenuation
of signal amplitude from dissipative propagation, which limits
crosstalk.
The proposed inversion scheme is based on a low-rank approxi-

mation to the Gauss-Newton Hessian. However, the rank of the ap-
proximated Hessian is a parameter of the approach and will
typically be much larger than the rank of quasi-Newton approxima-
tions to this quantity. In addition, the proposed higher rank
approximation is not conditioned by past iterations, resulting in
more accurate and larger updates. This allows more efficient inver-
sions with higher convergence rates. In the inversion results shown
in this paper, we will compare quasi-Newton inversion based on
past iteration data for the Hessian approximation, Gauss-Newton
inversion, and finally our proposed approaches to inversion. In
our approach, we also do not modify the cost function or the gra-

dient computation, preserving the main structure of the Gauss-New-
ton scheme.
The Green’s functions from the simultaneous source modeling

can lead to a considerable compression of the Jacobian matrix.
The inversion approach presented in this paper achieves further
computational savings by using this fact, and in addition, we use
a direct solution of the approximated Gauss-Newton equation. This
solver avoids the explicit construction of a large (N2) Hessian ma-
trix, thus allowing inversion with a much larger number of free
parameters.
In this paper, we first describe the theory of the low-rank approxi-

mation and how the data part of the Hessian is represented. We then
analyze the error of the approximation. Next, we describe the sol-
ution of the Gauss-Newton equation with the low-rank data Hessian
using a data Hessian matrix-free formulation. Then, we show inver-
sion results and compare with a quasi-Newton approach and to a
Gauss-Newton scheme with model parameter compression. Finally,
we discuss the results and conclude.

THEORY

The inversion of CSEM data is formulated as an optimization
problem:

σðrÞ ¼ arg min
σ∈M

εðσÞ; (1)

where r defines the conductivity at position r of a 3D conductivity
model in the set M of models compatible with a priori information
and

εðσÞ ¼ εDðσÞ þ εRðσÞ (2)

is the cost function. This cost function includes the regularization
misfit term εR, and the data misfit term εD, which depends on the
observations

εDðσÞ ¼
X

F;i;f;rrx;rtx

jWF
i ðrrxjrtx; fÞΔFiðrrxjrtx; f; σÞj2: (3)

Here, ΔFðσÞ ¼ Fobs − FsynthðσÞ represents the difference between
the observed and synthetic fields (F ¼ E for electric and F ¼ H for
magnetic),W is a datum weight (typically inverse measurement un-
certainty), i is the spatial components ðx; yÞ of the field recordings,
f is the frequencies, rrx is a receiver position, and rtx is a source
position. The shorthand notation κ ¼ ðF; i; f; rrx; rtxÞ will uniquely
label a measurement.
In this work, the nonlinear optimization problem is solved by

iteratively updating the 3D conductivity model, following the
Gauss-Newton method but with an approximate Hessian. At each
iteration, the model update Δσ is obtained by solving the linear
equation system

HΔσ ¼ −g; (4)

where the Hessian is

H ¼ HD þHR; (5)

and the gradient is
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g ¼ gD þ gR: (6)

We will refer to HD and gD as the data Hessian matrix and the
data gradient, which are derived from the data misfit term εD.
The quantities HR and gR are the regularization Hessian matrix
and the regularization gradient obtained from the regularization
misfit term εR.
The data Hessian matrix and the data gradient vector are con-

structed from the Jacobian matrix J as follows:

ðHDÞr;r 0 ¼
X
κ

ðJÞr;κðJÞ�r 0;κ þ c:c:; (7)

ðgDÞr ¼
X
κ

WκΔF�
κðJÞr;κ þ c:c: (8)

The superscript asterisk denotes complex conjugation, and the no-
tation c.c. denotes the complex conjugate of the preceding expres-
sion. The Jacobian is a complex N ×M matrix, where N is the
number of model parameters, andM is the number of data samples.
Note that in a Gauss-Newton approach, the Hessian in equation 7 is
approximated by neglecting second-order derivative terms. The
Jacobian can be constructed from Green’s functions (Støren et al.,
2008)

ðJÞr;κ ¼ WF
i ðrrxjrtx; fÞ

X
p

GF;J
p;i ðrrxjr; fÞ

×
X
q

GE;J
p;qðrjrtx; fÞĵqðrtx; fÞ; (9)

where r is the position in the conductivity model, GF;J
p;q denotes the

Green’s function for field F, component p, from a unit electric cur-
rent source in direction q, and ĵq is a vector component of the source
dipole moment approximated as a point dipole (p; q ¼ x; y; z).
When the field data have been normalized by the dipole moment,
ĵ is a unit vector. It is straightforward to generalize the expression in
equation 9 to the anisotropic and discrete case. From this expres-
sion, we see that explicit construction of any element ðr; κÞ of the
Jacobian requires the two Green’s functions associated with the
receiver position rrx and the source position rtx to be simulated.
Therefore, the total number of forward solutions (receiver simula-
tions plus source simulations) needed for building the data Hessian
matrix and the data gradient in a standard Gauss-Newton implemen-
tation is

NSim ¼ NFNiNrx|fflfflfflfflffl{zfflfflfflfflffl}
NSimrx

þ Ntx|{z}
NSimtx

:
(10)

Here, and throughout, the notation Na denotes the number of
unique elements of index a; i.e., Ni is the number of spatial com-
ponents of the field recorded at the receivers. The time-domain for-
ward modeling code used computes the Green’s function at all
survey frequencies from a single simulation. Therefore, NSim in
equation 10 does not scale with the number of frequencies Nf

for our case.

The data Hessian matrix is a realN × N dense symmetric positive
semidefinite matrix. The number of independent data samples
(number of Jacobian columns)

M ¼ NFNiNfNrxNtx (11)

could limit the maximum rank of the data Hessian matrix (Grayver
et al., 2013), i.e.,

rankðHDÞ ≤ minðN; 2MÞ: (12)

In a 3D CSEM survey, the number of data samples M can be larger
than the number of model parameters N.
The regularization εRðσÞ introduces a priori information about

the solution model σðrÞ (Zhdanov, 2009) and is usually designed
to give a positive definite Hessian that makes it feasible to solve
the linear system in equation 4. In our implementation, the regulari-
zation can incorporate information on model conductivity εapmod,
model smoothness εgrad, and conductivity anisotropy εap aniso:

εRðσÞ ¼ εapmodðσÞ þ εgradðσÞ þ εap anisoðσÞ: (13)

In this scheme, the regularization εRðσÞ is normalized by the num-
ber of model parameters, and the contributions to the total misfit for
the regularization terms in equation 13 are balanced by the use of
weights.
The regularization Hessian matrix derived from this scheme is

HR ¼ Hapmod þHgrad þHap aniso; (14)

where Hapmod is a diagonal positive definite matrix, and the other
two terms have off-diagonal structure.

Low-rank data Hessian matrix: Supershots and adjoint
modeling

For a state-of-the-art 3D CSEM survey and with a realistic model
representation, the numerical complexity involved with the con-
struction of the data Hessian matrix HD and the solution for the
model update can be very large. The number of simulations required
can be of order 105, and the dense linear system (see equation 4) can
be of size 106 × 106 depending on the parameterization.
In this paper, we propose a low-rank approximation to the data

Hessian matrix ~HD in a Gauss-Newton scheme; i.e.,

~H ~Δ σ ¼ −g; (15)

where the approximate Hessian is

~H ¼ ~HD þHR: (16)

It is only the data Hessian that is approximated; the gradient and
cost functions are not affected.
To compute the matrix ~HD, we consider a low-rank approxima-

tion in which sources in equation 9 are combined in superpositions,
after being encoded with a random phase factor. The result is a con-
traction of Jacobian columns that can be written as

Low-rank large-scale 3D CSEM GN E213
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ð ~JÞr; ~κ ¼
X
rtx∈s

eiϕκ ðJÞr;κ (17)

for a group of source positions s, and where ϕκ is uniformly dis-
tributed random numbers in the interval ½0; 2πÞ. The shorthand no-
tation ~κ ¼ ðF; i; f; rrx; sÞ will uniquely label a source-group
simulation.
The number of source groups Ns and the grouping scheme are

discussed below. Following this approach, the quantities in equa-
tion 17 associated with the source positions in a source group
and a specific receiver field-component are calculated from a single
simultaneous-source (supershot) forward solution of the Maxwell
equations. We denote the output of this simulation as

~GF
p;i;rrx;sðr;fÞ¼

X
q;rtx∈s

GE;J
p;qðrjrtx;fÞWF

i ðrrxjrtx;fÞeiϕκ ĵqðrtx;fÞ;

(18)

where WF
i ðrrxjrtx; fÞeiϕκ ĵqðrtx; fÞ is the distributed source strength

that corresponds to the receiver field component. For each source
group, we need to simulate all receivers, fields, and components, so
that the number of simulations is

NSims
¼ NFNiNrxNs: (19)

With respect to the total number of simulations, the quantity NSims

above will replace NSimtx
in equation 10 when supershots are ap-

plied. The supershot simulations in equation 18 define an approxi-
mate Jacobian ~J as

ð ~JÞr; ~κ ¼
X
p

GF;J
p;i ðrrxjr; fÞ ~GF

p;i;rrx;sðr; fÞ; (20)

which in turn defines an approximate data Hessian matrix ~HD:

ð ~HDÞr;r 0 ¼
X
~κ

ðJÞr; ~κðJÞ�r 0;~κ þ c:c:; (21)

analogous to a Gauss-Newton Hessian. The number of columns
(data samples) in the approximate Jacobian is

~M ¼ NFNiNfNrxNs: (22)

Here, Ns is typically selected small (i.e., of the order of 1–10 as
discussed below), so ~M ≪ N, and therefore

rankð ~HDÞ ≤ 2 ~M: (23)

Comparing equation 23 with equation 12, we see that this approach
results in a low-rank data Hessian matrix approximation ~HD. Note
that the number of forward solutions (compare equations 10 and 19)
and the storage requirement to construct ~HD (compare equations 11
and 22) scale by Ns instead of Ntx as for HD. The reduction in
numerical complexity from the approximation is described below.
For now, we just note that realistic values of the ratio Ntx∕Ns can be
of order 10–100, i.e., a dramatic decrease in complexity.

The number of source groups determines the accuracy of the
approximation. In the limit, where there is only one source per
group, no approximation is made and the Gauss-Newton Hessian
is recovered. We therefore consider Ns to be a tuning parameter
controlling the accuracy.
The data gradient gD is computed following the adjoint scheme

described in Støren et al. (2008), which does not involve any
approximation of the expression for the gradient in equation 8. Fol-
lowing this scheme, we compute

ðgDÞr ¼
X

υ¼F;i;f;rrx;p

signðFÞGF;J
p;i ðrjrrx; fÞLυðrÞ þ c.c.; (24)

where signðFÞ isþ1, when F is a magnetic field, and −1, when F is
an electric field, and

LυðrÞ ¼
X
q;rtx

GE;J
p;qðrjrtx; fÞ½WF

i ðrrxjrtx; fÞ�2ΔFĵqðrtx; fÞ:

(25)

The Green’s function GF;J
p;i in equation 24 is the same as the one

used for the approximated Jacobian ~J in equation 20. To compute
LυðrÞ, it is necessary to run additional simulations

NSimAdj
¼ NFNiNrx; (26)

because the source strength factors are different in the superposi-
tions in equations 18 and 25.
The total number of forward solutions needed to compute the

approximated data Hessian matrix in equation 21 and the data gra-
dient in equation 24 in the low-rank approach is

~NSim ¼ NSimrx
þ NSims

þ NSimAdj

¼ NF Ni Nrx ðNs þ 2Þ: (27)

For typical modern 3D CSEM surveys, NSim is dominated by the
number of sources Ntx. We thus see a decrease in the number of
forward solutions compared with Gauss-Newton inversion, when-
ever NFNiNrxðNs þ 2Þ∕Ntx < 1, where factors NF and Ni are of
order unity. Note that the number NSims

from equation 19 corre-
sponds to the number of additional forward solutions required
by the low-rank approach compared with gradient-based ap-
proaches, such as quasi-Newton and nonlinear conjugate gradients
(CG).

Source grouping strategies

We will now discuss the selection of source points for the groups
introduced in equation 17. We will consider the three different strat-
egies shown schematically in Figure 1, where all source positions
are arranged in four groups.
In Figure 1a, the sources in each group are selected, such that

each group covers a contiguous area. In Figure 1b, the sources
are grouped randomly, and in Figure 1c, the groups are created
by maximizing the distance between the sources in each group.
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Numerical studies described below show that using groups with
more distant sources, as in Figure 1c, gives the best result. This
is in agreement with the qualitative argument in the next section,
which predicts that approximation errors decay with increasing sep-
aration between simultaneous sources in equation 18. Note that the
specific grouping illustrated in the example Figure 1c is only ap-
proximately optimal, because further increase in separation could
be possible.
To illustrate some properties of different grouping strategies, we

will consider synthetic data from the model and source-receiver lay-
out shown in Figure 2. The example survey includes 25 receivers,
five towlines (sampling 330 source positions in total), and a thin
resistor at 50 ohm-m. The background resistivity is 1 ohm-m,
and the water resistivity is 0.25 ohm-m. The in-
put synthetic data for the study were the Ex and
Ey fields at frequencies 0.25 and 1.0 Hz, respec-
tively, without noise.
In Figure 3, we show the eigenvalue distribu-

tion for the data Hessian from the three different
grouping strategies described above, and the
Gauss-Newton Hessian. The eigenvalue distribu-
tion for the distant-sources grouping is in closest
agreement with the Gauss-Newton data Hessian
eigenvalue distribution, and the grouping based
on random selections is also similar to the group-
ing based on distant sources. The number of for-
ward simulations is the same for the different
grouping strategies, and identical to the rank
of the approximated data Hessian, rankð ~HDÞ ¼
600. The number of source groups was Ns ¼ 3.
As mentioned, the number of source groups

controls the accuracy and computational cost
of the approximation and is thus a tuning param-
eter. In particular, the value of this parameter de-
termines the level of crosstalk noise (discussed
below). Moreover, the rank of the approximate
data Hessian ~HD is proportional to the number
of groups. In Figure 4, we show an example,
based on the survey shown in Figure 2, of
how increasing the number of groups increases
the rank of the low-rank data Hessian in equa-
tion 21. We use the grouping strategy based
on distant sources described above. From Fig-
ure 4, we see how increasing Ns leads to an increase in the number
of nonzero eigenvalues, and an eigenvalue distribution closer to that
of the Gauss-Newton data Hessian HD.
In a typical application of the 3D CSEMGauss-Newton inversion

scheme, the regularization terms in the cost function at equation 13
will stabilize the solution of the linear system in equation 4, and
limit the condition number of the Hessian matrix H. Therefore,
though the matrix ~HD is typically rank deficient as shown in Fig-
ures 3 and 4, the eigenvalue distribution of the matrix in equation 4
that determines the update for the low-rank approximation can be
close to that of the original Gauss-Newton scheme. Figure 5 dem-
onstrates this for the survey shown in Figure 2. Note that the mag-
nitude scale of the eigenvalues in Figure 5 is different than in
Figures 3 and 4 due to a scaling factor applied to balance the con-
tributions of data misfit and regularization in the cost function. The
black curve (E6) shows how the a priori regularization acts to limit

the smallest matrix eigenvalue for the low-rank approximation with
Ns ¼ 3. For the small and largest eigenvalues, the distribution is
similar to that following from the Gauss-Newton Hessian (green
curve E1). The magenta curve (E4) shows the eigenvalues, when
only the data Hessian is considered. When we increase the number
of source groups, it is possible to obtain a regularized low-rank Hes-
sian that has a similar eigenvalue distribution as a Gauss-Newton
Hessian (compare the red curve E2 with the yellow curve E5).
For each iteration of the inversion, it is possible to vary the

sources that are included in each group, while keeping the
source-grouping strategy. Once the groups of sources are estab-
lished, one forward solution per group of sources and receiver field
component is performed (a total of NFNiNrxNs forward solutions),

Figure 1. Examples of different strategies for source grouping. The triangles represent
source positions, and the sources with the same color are grouped. (a) Four groups of
sources gathering closest ones in a single group simulation. (b) Four groups of sources
gathering the different sources randomly in a single group simulation. (c) Four groups of
sources gathering distant sources in a single group simulation.

Figure 2. Survey layout for synthetic study.

Figure 3. Example of eigenvalue distribution for different source-
grouping strategies. We use the same number of simulations in the
three different grouping strategies. The eigenvalues are shown in
sorted order from the largest to the smallest along the horizontal axis.
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using WF
i ðrrxjrtx; fÞeiϕκ as the source strength

for each source in a group s. Linearity of the
Maxwell equations implies that this is equivalent
to the summation of individual terms in equa-
tion 18. The random phase factors eiϕκ are
sampled independently for ϕκ in each group
κs ¼ ðF; i; f; rrx; rtx ∈ sÞ.

Noise analysis and phase encoding

Let us now consider the errors introduced by
the approximation of the Hessian in equation 21.
When the data Hessian is constructed according
to equation 7, each term contributing is com-
puted from the Green’s functions associated with
one receiver and one source position. The same
terms appear when computing the low-rank
approximation (equation 21), but in addition,
the approximation introduces terms (crosstalk
terms), which are not part of the Gauss-Newton
data Hessian. This is illustrated by the diagrams
in Figure 6, where Figure 6a shows a low-rank
approximation contribution from one source po-
sition, which is the same as that which also ap-
pears in a standard Gauss-Newton data Hessian
computation, and Figure 6b shows one of the ad-
ditional terms introduced through the low-rank
approximation.
The terms of Figure 6a involve only one

source position and one receiver position associ-
ated with a single measurement.
Due to the summation over source positions in

~G, the approximation will also include terms
involving two different source positions (but
the same receiver channel, e.g., Exðrrxjrtx; fÞ)
in the product in equation 21. These terms are
shown as Figure 6b. We will refer to these dia-
grams as crosstalk and denote their contribution
η, such that

~HD ¼ HD þ η: (28)

Though the crosstalk terms will represent an approximation error,
we note that η has specific matrix properties. The matrix η will be
symmetric, and from the definition, we have that

rankð ~HD − ηÞ ¼ rankðHDÞ: (29)

These properties could be used in schemes to reduce the effect of
η in the approximation. In Figure 7, we show the diagonal (i.e.,
matrix elements for indices σVðrÞ; σVðrÞ and σHðrÞ; σHðrÞ, where
subscripts V and H pertain to vertical and horizontal component)
of the matrices HD and η for two different number of groups. These
results were computed using a half-space model. Comparing Fig-
ure 7b and 7c, we note that the crosstalk (approximation noise) is
reduced when we increase the number of source groups from one
group to three. An important fact is that the Hessian magnitude ex-
ceeds the magnitude of the crosstalk. We study these two phenom-
ena later in this section.

Figure 4. Example of eigenvalue distribution for different number of distant-source
groups Ns.

Figure 5. Hessian matrix H eigenvalue distributions. Blue curve E0: Gauss-Newton data
Hessian HD only. Green curve E1: Gauss-Newton data Hessian and regularization
HD þHapmod. Red curve E2: Gauss-Newton data Hessian and regularization
HD þHgrad. Cyan E3, purple E4, and yellow E5 curves: low-rank data Hessian ~HD only
for 1, 3, and 8 source groups. Black curve E6: low-rank data Hessian and regularization
~HD þHapmod.

Figure 6. Diagrams representing the two types of terms included in
the data Hessian matrix of a low-rank approximation (equation 21).
Each source position (subscript “tx”) is associated with its corre-
sponding source strength factors (see discussion following equa-
tion 18). In these diagrams, an arrow from, e.g., position rtx to r
represents a Green’s function GF;J

p;qðrjrtx; fÞ, which is a factor in
the corresponding term of the Hessian. “Reverse time” arrows,
where the origin for the propagation represented by arrows is lo-
cated at a receiver position (subscript “rx”) appear with complex
conjugation in the Hessian expressions. (a) Diagram representing
those terms of ~HD that also make up the data Gauss-Newton Hes-
sian (equation 7). (b) Diagram representing the additional crosstalk
noise terms introduced into ~HD, where two different source posi-
tions contribute.
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The large-scale structure of the crosstalk seen in Figure 7 could
be detrimental to the inversion, convergence but it is hard to sup-
press. The synthetic data inversion results in Appendix A show that
an inversion result of similar quality as in the Gauss-Newton ap-
proach can be achieved despite the crosstalk noise. As an additional
observation, we note that the diagonal crosstalk noise was reduced
more efficiently by increasing the number of source groups in the
horizontal rather than the vertical components as seen in Figure 7b
and 7c.
The phase encoding in the supershots in equation 18 is a way to

reduce the errors due to crosstalk. Noise reduction approaches
based on random phase encoding have also been applied in seismic
modeling (see, e.g., Bansal et al., 2013). In equation 21, the random
phase factors eiϕκ will cancel in the terms, where a single source
position is involved, as in the terms for the Gauss-Newton Hessian
(Figure 6a). This is because the source Green’s functions appearing
in ~HD are included in combinations:

GE;J
p;qðrjrtx; fÞeiϕE;i;rtx ½GE;J

p;qðr 0jrtx; fÞeiϕE;i;rtx ��: (30)

For these terms, the random phase cancels, and phase encoding does
not affect the diagrams corresponding to the Gauss-Newton data
Hessian.
The crosstalk terms result in contributions, where the source

Green’s functions for two different positions rtx and r 0 tx appear
in combinations of the type,

GE;J
p;qðrjrtx;fÞ½GE;J

p;qðr 0jr 0tx;fÞ��eiϕE;i;rtx−iϕE;i;r 0 tx : (31)

The random phase factor in this expression will
act to reduce the total contribution of the cross-
talk terms. To analyze this, let us first assume that
the magnitudes of the crosstalk terms in η are
Gaussian distributed. In such a case, the resulting
magnitude of the sum of the crosstalk terms will
be governed by the properties of a Gaussian ran-
dom walk. If we assume that there are A terms
contributing, then the magnitude jηj will scale
as ∼

ffiffiffiffi
A

p
instead of linear scaling due to the ran-

dom phases in equation 31.
The number of terms (Figure 6a) contributing

to HD is equal to the different number of combi-
nations (equation 11) of equation 30 that appear
in equation 21; i.e., it is proportional to Ntx. The
number of crosstalk terms (Figure 6b), that con-
tribute to η, scales with the number of all possible
combinations of two different sources (equa-
tion 31) included in a group simulation that ap-
pear in equation 21, i.e., scales as N2

tx (assuming
a single source group Ns ¼ 1). However, the
magnitude jηj should still scale by Ntx by anal-
ogy to a Gaussian random walk as described
above, i.e., jηj ∼ N tx.
Let us now consider the details of the distribu-

tion of crosstalk magnitudes. The physics of the
problem indicates that the magnitude distribution
of the crosstalk terms should be more centered
than a Gaussian distribution. The exponential de-
cay of the magnitude of the Green’s functions
will result in negligible contributions from the

product of Green’s functions in equation 31, when the distance
jrtx − r 0 txj is large. This will be the case for many of the terms mak-
ing up η. The spatial decay of the Green’s functions is shown in
Figure 8.
Thus, the attenuation of the magnitude for the contributions

makes jηj scale by the number of sources in a source group such
as ðNtxÞα with α < 1, and the asymptotic behavior of the approxi-
mation is given as limNtx→∞jηj∕jHDj ¼ 0.
Next, we turn our attention to the magnitude of the individual

terms contributing to HD relative to the crosstalk terms in η. First,
we note that for each crosstalk contribution, there is a contribution
to the data Hessian with larger magnitude. The elements of the Ja-
cobian are Fréchet derivatives computed from a product of a
Green’s function associated with a receiver position and a source
position (see equation 20). Magnitudes of Fréchet derivatives
(formed by the Green’s functions shown in Figure 8) are shown
in Figure 9. Contributions to ~HD are products of two such Fréchet
derivatives. A crosstalk contribution is the product of two Frechet
derivatives (with complex conjugation on one factor) corresponding
to two different source positions, e.g., the product of Rx1-Tx5 by
Rx1-Tx3 of Figure 9. The terms contributing to HD are products of
a Fréchet derivative by its complex conjugate, e.g., the product of
Rx1-Tx3 by the complex conjugate. Using the magnitudes repre-
sented in Figure 9 as a reference, we see that this contribution
to HD will dominate over the crosstalk contribution from Rx1-
Tx5 by Rx1-Tx3. This is true in general: a term with a single source
will dominate over the crosstalk terms sharing a source.

Figure 7. Plots of the Hessian and crosstalk matrix diagonals at depth 1500 m for the
survey shown in Figure 2. Vertical conductivity component on the left and horizontal
conductivity component on the right. These results were computed in a half-space
model.
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We can reduce the error of the approximation by increasing the
number of source groups Ns. In fact, as we showed above, using the
maximum Ns ¼ Ntx makes ~HD identical to HD, but in this case,
there is no reduction in computational cost. We also demonstrated
that we can optimize the approximation by constructing the source
groups with maximum separation between the spatial locations of
sources.
This supports the numerical results, where source groups based

on the maximum distance between sources were found to give the
highest accuracy, as is discussed in the “Results” section. The dis-
tance between sources determines the number of groups, and can

therefore be considered as the tuning parameter for the accuracy of
the approximation.
The approach described in this paper will retain the same cost

function ϵ and gradient g as is used in a standard Gauss-Newton
scheme. The approximation only introduces error into the Hessian
in the Gauss-Newton equation, which results in an approximate
search direction ~Δσ. However, at early iterations of the inversion,
when the cost function is large and far from the minimum, the para-
bolic assumption of the Gauss-Newton scheme will be poor and the
accuracy of the computed search direction need not be very good.
Treating the number of source groups as a tunable parameter in our

approach, we may then improve the accuracy of
the approximation dynamically as the inversion
gets closer to the minimum and improved search
direction accuracy is required to maintain good
convergence rate.

Data Hessian matrix-free recursive
direct solver

As we mentioned in the “Introduction” sec-
tion, the main challenge of implementing a 3D
CSEM Gauss-Newton is the computational cost.
The low-rank approximation to the data Hessian
matrix described above can reduce the number of
forward solutions, as well as the size of the Ja-
cobian by a factor of 10–100. The size of the lin-
ear equation system for the model update in
equation 15 will, however, scale quadratically
by the number of free parameters of the inversion
if the Hessian is constructed explicitly, and this
will be a dense matrix. For a typical 3D CSEM
problem, the number of parameters considered in
quasi-Newton inversion schemes can be of order
107. In such a case, a parameter compression
strategy that can reduce the order of magnitude
of the parameter number by 10–100 is required to
solve the numerical linear algebra problem. For
the low-rank approximation, we can however
make use of the implicit matrix representation in
equation 21 to construct a data Hessian matrix-
free solver. The feasibility of the resulting direct
solver is determined by the sparsity of the regu-
larization Hessian matrix and the smaller size of
the Jacobian in the low-rank approach.
From the Gauss-Newton equation 15, the

update at each iteration is obtained as ~Δσ ¼
− ~H−1g, where the inverted matrix has the follow-
ing structure:

~H−1 ¼
�
HR þ

X~M

m¼1

ð ~Jm ~J†m þ c:c:Þ
�−1

;

(32)

where ~M is the number of approximated Jacobian
columns as in equation 22, and ~Jm represents the
mth column. The superscript † symbol represents
the conjugate transpose. Introducing the short-
hand notationFigure 9. Fréchet derivatives computed from the Green’s functions in Figure 8.

Figure 8. Green’s function amplitude at different source (Tx) and receiver (Rx) posi-
tions, for the electric field Ex at frequency f ¼ 0.25 Hz, when using the survey layout
represented at Figure 2 for a larger model with the same background and water con-
ductivity but without the 50 ohm-m target.
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~JmRe
¼ Reð

ffiffiffi
2

p
~JmÞ; ~JmIm

¼ Imð
ffiffiffi
2

p
~JmÞ; (33)

we can rewrite equation 32 in the following form:

~H−1 ¼
�
HR þ

X2 ~M

j¼1

ð ~Jj ~JTj Þ
�−1

; (34)

with ~J1 ¼ ~J1Re ,
~J2 ¼ ~J1Im ,

~J3 ¼ ~J2Re , and so on. As described in
Press et al. (2002), the matrix inverse can be computed recursively
applying the Sherman-Morrison formula:

ðAþ uuTÞ−1 ¼ A−1 −
A−1uuTA−1

1þ uTA−1u
: (35)

To compute ~Δσ, we have implemented a recursive solver using
the Sherman-Morrison formula, which is explained below. At each
iteration, we incorporate a single approximated Jacobian column ~Jj
that has been computed on the fly to avoid storing the whole ~J ma-
trix. At iteration j, it is only necessary to keep in memory the sparse
HR, the so-called iteration vectors wj and the scalars cj. The algo-
rithm is described below in three steps.
Initialization,

~H−1
ð0Þ ¼ H−1

R : (36)

First iteration ðj ¼ 1Þ,

~H−1
ð1Þ ¼ ð ~Hð0Þ þ ~J1 ~J

T
1 Þ−1

¼ ~H−1
R −

~H−1
R
~J1 ~J

T
1
~H−1
R

1þ ~JT1 ~H−1
R
~J1

¼ ~H−1
R − c1w1wT

1 ; (37)

w1 ¼ ~H−1
R
~J1; (38)

c1 ¼ ð1þ ~JT1w1Þ−1: (39)

The Sherman-Morrison formula, equation 35, is applied in the sec-
ond step of equation 37. Second iteration ðj ¼ 2Þ,

~H−1
ð2Þ ¼ ð ~Hð1Þ þ ~J2 ~J

T
2 Þ−1

¼ ~H−1
ð1Þ −

~H−1
ð1Þ ~J2 ~J

T
2
~H−1
ð1Þ

1þ ~JT2 ~H−1
ð1Þ ~J2

¼ ~H−1
ð1Þ − c2w2wT

2

¼ ~H−1
R − c1w1wT

1 − c2w2wT
2 ; (40)

w2 ¼ ~H−1
ð1Þ ~J2 ¼ ~H−1

R
~J2 − c1w1wT

1
~J2; (41)

c2 ¼ ð1þ ~JT2w2Þ−1: (42)

When generalizing for iteration j,

~H−1
ðjÞ ¼ ~H−1

ðj−1Þ − cjwjwT
j ¼ ~H−1

ð0Þ −
Xj

q¼1

cqwqwT
q ; (43)

wj ¼ ~H−1
ðj−1Þ ~Jj ¼ ~H−1

ð0Þ ~Jj −
Xj−1
q¼1

cqwqwT
q
~Jq; (44)

cj ¼ ð1þ ~JTjwjÞ−1: (45)

At the final iteration j ¼ 2 ~M, we obtain the solution

~H−1 ¼ ~H−1
ð2 ~MÞ; (46)

and then the approximated model update is obtained as

~Δσ ¼ −
�
~H−1
ð0Þg −

X2 ~M

j¼1

cjwjwT
j g
�
: (47)

We note that it is also possible to omit the explicit construction of
the inverse regularization Hessian matrix, H−1

R ¼ ~H−1
ð0Þ. If we pro-

vide a method to compute solutions of the system HRx ¼ v, then
all matrix-vector products involving ~H−1

ð0Þ, such as in equations 44
and 47 can be obtained without the explicit inverse. Because the
regularization will be a sparse matrix (being a banded matrix for
the case of the regularization described in equation 13) and these
solutions will be required many times, a direct solver will be effi-
cient: If a factorization is carried out at the initialization step, all
subsequent computations of H−1

ð0Þv can be obtained very quickly
from the direct solver.
The main benefit of solving the linear system in equation 15 as

described here is that the memory complexity is smaller than by
keeping the dense ~H matrix in memory. The memory complexity
for this Sherman-Morrison formula-based recursive solver is
OðN ~MÞ, where ~M ≪ N for a realistic example with a small Ns.
Compared with approaches where the Hessian is constructed explic-
itly, it becomes feasible to solve linear systems in equation 15 with
the same number of parameters as is typically used in quasi-Newton
approaches.

Approximate inverse regularization Hessian contribution

In the example shown in this paper, we introduced a further
approximation to simplify the data Hessian matrix-free solver de-
scribed above. We suppress off-diagonal elements of the sparse
regularization Hessian matrix,

~HR ¼ diagðHRÞ; (48)

and use the Hessian

Ĥ ¼ ~HD þ ~HR: (49)
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The approximated regularization Hessian matrix ~HR allows us to
explicitly construct the inverse of the regularization contribution
to the Hessian for the linear equation solver in equation 36.
TheapriorimodelregularizationmatrixHapmod isnotmodifiedwhen

it is used in the approximated regularization Hessian matrix (equa-
tion 48) because Hapmod is diagonal by definition. For the gradient
smoothnessHgrad, the approximation will affect the resulting update,
but because we are carrying out iterations of the nonlinear optimiza-
tion, the lack of information can be compensated at later iterations.

INVERSION RESULTS

In this section, we present and compare the inversion results from
a recent 3D CSEM field data set. The geologic complexity and the
scale of the acquisition of the field data make this a challenging and
interesting survey to use to test the performance of inverse schemes.
We consider four different schemes: (1) quasi-Newton limited-
memory Broyden-Fletcher-Golfarb-Shanno with boundaries (L-
BFGS-B) (Zhu et al., 1997), (2) 3D Gauss-Newton using model
parameter compression and a CG solver for equation 4, (3) the pro-
posed low-rank approach using model parameter compression and a
CG solver for equation 15, and (4) the low-rank approach using the
presented recursive direct solver with the approximation in equa-
tion 48. Approaches 1 and 2 are in the class of optimization methods
most commonly applied for inversion of marine CSEM data today.
For all the tests, we use l 2-norm model smoothness regularization.
In Appendix A, we include inversion results from the synthetic sur-
vey in Figure 2.
The survey data considered here were acquired by EMGS ASA in

2014. Due to show right restrictions, we cannot describe the precise
location of the survey or the details of the survey layout. We con-
sider a subset of the source towlines and receiver deployments from
the survey, and the spatial extent of the area covered by receivers
and towlines is shown in Figure 10. The water depth in this area is
approximately 2.5 km, and multiple salt bodies are located at the
boundaries of the area covered by receivers. For the examples in
this section, we included data from 256 receivers recording Ex

and Ey from sources along 11 towlines. The receiver and towline
spacing was 2 km. Note that there are receivers without a source
towline crossing over their position in this data selection, i.e.,

receivers recording only azimuth data. There are 1802 source posi-
tions in the data subset considered here. The survey frequencies
were 0.125, 0.25, 0.5, 1.0, and 1.875 Hz. In total, the number of
data samples is approximately 0.55 × 106 in these examples.
All of the inversions used a half-space initial guess resistivity

model, with the bathymetry and water conductivity determined
from survey data. We note that typically some structural informa-
tion, such as salt outlines from seismic, is used to obtain the best
inversion results. However, in this case, we instead use a simple
initial model to highlight the performance of different inversion
schemes. We consider anisotropic inversion with transverse isot-
ropy defined by a vertical axis, i.e., a vertical transverse isotropy
(VTI) model, in which we invert for horizontal and vertical resis-
tivity. For some of the inversion tests, the convergence became slow
after the misfit reached a root-mean-square (rms) value of 3.9, and
we therefore use this value to have a fair comparison between meth-
ods. We define the rms value as

ffiffiffiffiffiffiffiffiffi
ε∕N

p
, where ε is defined in equa-

tion 2 and N is the number of observations. Although results with
misfit this large are not suited for geologic interpretation, they allow
us to effectively compare the performance and numerical cost of the
different inversion schemes that we consider in this paper.
The model parameter compression scheme used for the inversion

schemes 2 and 3 defined previously is based on creating a coarser
discretization of the model at depth and away from the area covered
by the receivers. The coarsening is determined by the expected res-
olution of the data. This scheme was used to obtain a reduction of
the number of parameters on the order of a factor of 200 compared
with a homogeneous discretization of the entire domain, and makes
it feasible to construct the Gauss-Newton Hessian matrix for such a
large model.
The results from the L-BFGS-B optimizer 1 are shown in Fig-

ure 11. To achieve this result we carried out 60 iterations of the
inversion, where each iteration required 1004 forward solutions

Figure 10. Subset of the survey data considered in the inversion
examples. Receivers were positioned in a 2 × 2 km grid inside
the area shown by the polygons. There are nine towlines with di-
rection west–east, and two towlines with direction north–south. The
average lateral separation between towlines is 1.5 km, and the aver-
age maximum source-receiver offset is 12 km. The source towing
was focused on the top region, where receivers recorded inline and
azimuth data. The receivers in the lower region only recorded azi-
muth data.

Figure 11. Survey scheme 1 inversion result: L-BFGS-B optimizer
result; depth slices at 4200 m for (a) the vertical resistivity model
and (b) the horizontal resistivity model; the total number of free
parameters was 107.
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(60,240 solutions in total). The memory usage to compute the up-
date was approximately 10 GB for 107 free parameters.
In Figure 12, we show results from the Gauss-Newton scheme 2,

where we used the model parameter compression and used a CG
method to solve equation 4. This result was obtained after 13 iter-

ations, using 2806 forward solutions per iteration (36,478 simula-
tions in total) and a memory usage of 12 GB for 5 × 104 parameters.
Figure 13 shows results obtained using the low-rank approxima-

tion 3 to the data part of the Hessian matrix in equation 15. For this
case, we used the same model compression as in case 2. The results
were obtained after 15 iterations, and the number of forward sol-
utions per iteration was 1506 (22,590 forward solutions in total)
using Ns ¼ 1 source groups. The maximum memory usage was
similar to case 2.
In Figure 14, we compare the eigenvalue distribution of the Hes-

sian matrices for the first iteration in cases 2 and 3, with the eigen-
value distribution of their data Hessian matrices (without

Figure 12. Survey scheme 2 inversion result: 3D Gauss-Newton
optimizer result (H ¼ HD þHR) using CG solver and model
parameter compression; depth slices at 4200 m for (a) the vertical
resistivity model and (b) the horizontal resistivity model; the total
number of free parameters was 5 × 104.

Figure 13. Survey scheme 3 inversion result: low-rank optimizer
( ~H ¼ ~HD þHR) using CG solver and model parameter compression;
depth slices at 4200 m for (a) the vertical resistivity model and (b) the
horizontal resistivity model; the total number of free parameters was
5 × 104 and the number of source groups was Ns ¼ 1.

Figure 14. Eigenvalue decomposition for the first-iteration Hessian
matrices (with and without regularization) of the inversions 2 and 3.
E0: data Hessian matrix HD of inversion 2. E1: data Hessian
matrix ~HD of inversion 3. E2: Hessian matrix H ¼ HD þHgrad,
with WgradðσÞ ¼ 1e−1, of inversion 2. E3: Hessian matrix ~H ¼
~HD þHgrad, with WgradðσÞ ¼ 1e−1, of inversion 3.

Figure 15. Survey scheme 4 inversion result: low-rank optimizer
using the recursive solver with the diagonal of the regulariza-
tion Hessian matrix (Ĥ ¼ ~HD þ ~HR); depth slices at 4200 m for
(a) the vertical resistivity model and (b) the horizontal resistivity
model; the total number of free parameters was 107 and the number
of source groups was Ns ¼ 1.
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regularization). We see that when we incorporate the regularization,
the eigenvalue distributions of both cases (compare E2 and E3) are
similar. This is in agreement with the discussion of the results as
shown in Figure 5.
Finally, in Figure 15 we show inversion results for case 4, where

we use the low-rank approximation to the data part of the Hessian
(Ns ¼ 1), as well as the matrix-free recursive solver summarized in
equation 47. For this case, we executed 21 iterations of the inver-
sion, and the number of forward solutions per iteration was 1506
(31,584 simulations in total). We used the same number of free

parameters, 107, as in case 1 with no compression of model param-
eters. The memory usage to construct the update was 180 GB. As
explained above, for this particular case, we neglected the off-diago-
nal parts of the regularization Hessian matrix. This approximation
may have impaired the inversion convergence (see the effects of this
approximation in the synthetic results shown in Figure 17).
The large-scale structures in the recovered resistivity models are

similar for the four inversion approaches. There is a difference in
scale between cases 1 and 4 and 2 and 3 due to the model parameter
compression scheme. The similarities appear to be stronger in the
vertical than in the horizontal resistivity models. The resistive re-
gions in the top left and top right corners are due to the presence
of salt. The structures seen in the center of the survey area corre-
spond to structures identified in seismic data. The magnitude of the
resistivity contrast varies in the four cases, but note that the misfit is
approximately the same for these results.
Let us now analyze the data fit. Our measure for the misfit is

computed according to the following expression:

χ ¼ jFobs − Fsynthj
δFobs

: (50)

This quantity, which we call a “significant misfit,” gives the dis-
crepancy between the observed and synthetic data in units of the
estimated observed data measurement uncertainty, denoted by
δFobs. Figures 16 and 17 show the common midpoint sorted data
misfit χ for offsets 4 and 8 km, respectively, for the case of the low-
rank approximation with the recursive solver 4. The misfit distribu-
tion is similar for the other inversion cases considered in this paper.
The largest variations of the residuals between different approaches
are found in the northwest and northeast corners of the survey area,
where salt bodies are present. The data coverage for these structures
is poor due to a lack of receivers over these regions. Only the ex-
tension of source towlines out of the receiver grid gives data that
sample this part of the model. The resulting lack of information
makes it difficult for the inversion to fit these data.

DISCUSSION

In this section, we compare the computational complexity of the
low-rank approach introduced in this paper to that of the quasi-
Newton and Gauss-Newton approaches.
The L-BFGS-B optimizer is of quasi-Newton type and requires

us to compute the gradient g for each update. The required number

Figure 17. Significant misfit (equation 50) for survey scheme (4) in-
version results: low-rank optimizer using the recursive solver with the
diagonal of the regularization Hessian matrix (Ĥ ¼ ~HD þ ~HR). Sig-
nificant misfit for all the data at offset 8 km and frequency 0.5 Hz.

Table 1. Computational complexity for the different schemes: (1) L-BFGS-B, (2) 3D Gauss-Newton using CG (3DGN + CG),
(3) low-rank approach using CG (LR + CG), and (4) low-rank approach using the proposed recursive direct solver but just
using the diagonal of the regularization matrix (LR + DS diag). The value k is the condition number of the Hessian matrix that
in general depends on the size of the matrix.

(1) L-BFGS-B
N ¼ 107

(2) 3DGN + CG
Ns ¼ 1, N ¼ 5 × 104

(3) LR + CG
Ns ¼ 1, N ¼ 5 × 104

(4) LR + DS diag
Ns ¼ 1, N ¼ 107

Number of simulations per iteration OðNrxÞ OðNtxÞ OðNrxNsÞ OðNrxNsÞ
Jacobian columns (M or ~M) Five updates OðNtxÞ OðNsÞ OðNsÞ
Solver time complexity OðNÞ OðN2k1∕2Þ OðN2k1∕2Þ OðN ~M2Þ
Solver memory complexity OðNÞ OðN2Þ OðN2Þ OðN ~MÞ

Figure 16. Significant misfit (equation 50) for survey scheme (4) in-
version results: low-rank optimizer using the recursive solver with
the diagonal of the regularization Hessian matrix (Ĥ ¼ ~HD þ ~HR).
Significant misfit for all the data at offset 4 km and frequency
0.5 Hz.
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of forward solutions scales by the number of receivers and not the
number of sources. The computation of the update has a relatively
small numerical cost. The L-BFGS-B builds up an approximation to
the Hessian matrix using past gradients and updates. The Gauss-
Newton scheme has a larger computational cost because it involves
an explicit computation of a second derivative from the Jacobian.
In Table 1, we show a comparison between the computational cost

of the different schemes in which we showed inversion results above.
Table 1 shows that the number of simulations for the low-rank

approach is closer to that of the quasi-Newton scheme when the
number of source groups is small (the presented results use
Ns ¼ 1). The computational load from forward solutions following
from Gauss-Newton is very large.
A further benefit of the low-rank approach is that the data samples

(Jacobian columns) required to construct the Hessian scales with the
number of source groups Ns rather than the number of sources Ntx,
such as the Gauss-Newton scheme. For the L-BFGS-B optimizer, it is
only necessary to store the last few model updates and gradients for a
few iterations (five in our case) to estimate the Hessian matrix.
In the previous section, we showed how a recursive direct solver

can avoid the construction of the data part of the Hessian matrix.
The use of the low-rank approach in conjunction with this solver
results in a very small memory complexity. Thus, we can solve large
systems when the memory resources are limited (e.g., requires GB
instead of TB when using 106 unknowns). The time complexity
may however be similar for cases 3 and 4 described above.
In Table 2, we summarize the computational complexity of each

of the four tests.
The 3D Gauss-Newton scheme 2 and low-rank schemes 3 and

4 require fewer iterations than the quasi-Newton case 1 to achieve
the same misfit. This is an indication that the low-rank schemes give
better updates than the quasi-Newton case.
In the case of the low-rank inversion (schemes 3 and 4), the total

number of simulations demonstrates that fewer forward solutions
are required than in case of the 3D Gauss-Newton scheme 2 to reach
the same misfit. We expect that this difference can be larger for sur-
veys with a larger number of source positions (in this case,
Ntx∕Nrx ¼ 4.6). The difference between the number of simulations
for the low-rank cases 3 and 4 is probably due to the approximated
regularization Hessian matrix, which leads to the requirement for
more iterations to reach the same misfit.

The low-rank scheme results in a significant compression of the
Jacobian matrix used to form the Hessian. Because computational
complexity is proportional to the number of Jacobian columns, this
is an important factor to take into consideration. In implementations
in which a large Jacobian matrix is stored, the memory complexity
can be a challenge, too. The low-rank scheme can reduce this com-
plexity significantly as we showed in Tables 1 and 2, and in our ex-
ample, leads to reduction by a factor M∕ ~M ¼ 550;000∕2510≍200.

CONCLUSIONS

In this paper, we have introduced a low-rank approximation to the
3D CSEM Gauss-Newton data Hessian matrix, and a matrix-free
recursive direct solver. When the approximation is used together
with the direct solver, inversion results similar to standard 3D
Gauss-Newton optimization are obtained, but at a cost similar to
that of quasi-Newton methods. This is achieved without modifying
the cost function or the gradient, preserving the main structure of the
Gauss-Newton scheme. Moreover, the direct solver allowed us to
use a much finer discretization of the model with an associated
larger number of inversion parameters.
The low-rank data Hessian matrix approach can reduce the num-

ber of simulations per iteration in the order of the ratio of the num-
ber of sources to the number of receivers in a survey. Moreover, the
matrix-free recursive direct solver reduces the memory complexity
when using large number of inversion parameters.
In our results, the low-rank approach reaches the same residual

misfit as full rank 3D Gauss-Newton when starting from a half-
space, but with a lower total number of simulations. This is due
to the fact that the low-rank scheme needs approximately the same
number of iterations as the full rank 3D Gauss-Newton, but a num-
ber of simulations per iteration closer to a quasi-Newton scheme.
The recursive direct solver allows using a larger number of inver-
sion parameters than with the 3D Gauss-Newton scheme due to the
smaller use of memory.
The recursive direct solver benefits when using a narrow-banded

regularization Hessian matrix. For this case, it is feasible to factorize
the regularization Hessian matrix, and reuse it in every step of the
direct solver. This avoids the approximation based on neglecting the
off-diagonal parts of the regularization Hessian matrix, which may
impair the inversion.

Table 2. Computational cost to obtain inversion results: (1) L-BFGS-B; (2) 3D Gauss-Newton using CG (3DGN + CG), (3) low-
rank approach using CG (LR + CG), and (4) low-rank approach using the proposed recursive direct solver but just using the
diagonal of the regularization matrix (LR + DS diag). Note: The numbers in square brackets for schemes (2) and (3) show the
cost in the case in which the model parameter compression scheme is not applied, i.e., in the case of using 107 free parameters.

(1) L-BFGS-B (2) 3DGN + CG (3) LR + CG (4) LR + DS diag

Number of free parameters ðNÞ 107 5 × 104 5 × 104 107

Number of simulations per iteration 1004 2806 1506 1506

Jacobian columns (M or ~M) Five updates 550000 2510 2510

Solver time complexity (FLOPs) 109 2.5 × 1012 ½1017� 2.5 × 1012 ½1017� 6.3 × 1012

Solver memory complexity (GB) 0.149 12 ½93;132� 12 ½93;132� 180

Total number of iterations 60 13 15 21

Total number of simulations 60;240 36;478 22;590 31;584
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APPENDIX A

SYNTHETIC SURVEY RESULTS

In this appendix, we will present inversion results for the syn-
thetic survey shown in Figure 2. This survey example was used
to illustrate certain theoretical aspects of the low-rank approxima-
tion in section “Theory.” The numerical complexity involved in the
inversion of this synthetic data set is not very large, but the results
are useful to validate the different schemes considered.

We consider four different inversion methodologies: (1s) quasi-
Newton L-BFGS-B (Zhu et al., 1997), (2s) 3D Gauss-Newton with
a CG solver for equation 4, (3s) the proposed low-rank approach
with a CG solver for equation 15, and (4s) the low-rank approach
using the presented recursive direct solver with the approximation
in equation 48. Due to the small size of the synthetic survey con-
sidered, and in contrast to the field data example studied in section
“Inversion results,” we do not need to use a model parameter com-
pression. The inversion parametrization is a regular grid with cell
size 200 × 200 × 100 m. We consider a VTI model, resulting in 5 ×
104 free parameters. The initial guess model was a half-space for all
the inversions considered in this appendix.
This initial model has a background resistivity of 1 ohm-m, and a

water resistivity of 0.25 ohm-m. We terminated the iterations when
the convergence rate became too slow (misfit change in new iter-
ation smaller than 1%).
In Figure A-1, we show the inversion results for the scheme 1s.

The inversion took 74 iterations, where each iteration required 50
forward solutions (3700 solutions in total). The
memory usage to compute the update was ap-
proximately 10 MB. Though the transverse resis-
tivity of the target is of the same order as in the
true model, the inversion does not recover the
correct target shape. We expect that the geometry
of the reconstruction could be improved by tun-
ing the regularization settings to favor a model
with resistivity contrasts rather than smooth var-
iations. Note that the target is reconstructed in the
vertical resistivity component because the verti-
cal resistivity governs the target response, and we
did not apply any anisotropy regularization. This
is common to all the results in this appendix.
The inversion result for the scheme 2s is

shown in Figure A-2. This result was obtained
after 53 iterations, using 645 forward solutions
per iteration (34,185 simulations in total) and
a memory usage of 12 GB for the calculation
of the update. The target is recovered in the ver-
tical model with the approximate correct shape
and resistivity. In the horizontal model, we can
observe weak artifacts at positions correlating
to the receiver positions.
Figure A-3 shows the inversion results for the

scheme 3s. This result was achieved after 53 iter-
ations, with 150 forward solutions per iteration
(7950 simulations in total), and a memory usage
of 12 GB for the calculation of the update. We
observe that these results are similar to those
achieved with the scheme 2s. However, the target
is situated 100 m above its position in the true
model. Considering the low frequencies in-
volved, we believe that this difference (on the
scale of the discretization) is below the resolution
of the data.
For the synthetic survey that we considered in

this appendix, the reduced memory usage from
the recursive direct solver is not relevant because
the low number of model parameters makes the
CG solver feasible even without model parameter

Figure A-1. Synthetic-survey scheme 1s inversion result: L-BFGS-B optimizer result;
vertical slice at y ¼ 2900 m for (a) the vertical resistivity model and (b) the horizontal
resistivity model; iteration 74 with misfit ¼ 0.382 rms.

Figure A-2. Synthetic-survey scheme 2s inversion result: 3D Gauss-Newton optimizer
result (H ¼ HD þHR) using CG solver; vertical slice at y ¼ 2900 m for (a) the vertical
resistivity model and (b) the horizontal resistivity model; iteration 53 with
misfit ¼ 0.125 rms.

Figure A-3. Synthetic-survey 3s inversion result: low-rank optimizer ( ~H ¼ ~HD þHR);
vertical slice at y ¼ 2900 m for (a) the vertical resistivity model and (b) the horizontal
resistivity model; iteration 76 with misfit ¼ 0.137 rms.
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compression. However, to validate the different approaches, we
show in Figure A-4, the inversion results for scheme 4s. This result
was achieved after 119 iterations, using 150 forward solutions per
iteration (17,850 simulations in total). The memory usage to com-
pute the update was approximately 20 MB. In these inversion re-
sults, we observe detrimental effects following from the
approximation of the regularization Hessian matrix as a diagonal
matrix. The target is not as focused as in the result from the previous
schemes, and in the horizontal model the artifacts are stronger. We
expect that these aspects would improve if a better approximation to
the inverse of the regularization Hessian contribution was used
when constructing the update in the data Hessian matrix-free solver.
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