Computational Geosciences (2019) 23:1237-1258
https://doi.org/10.1007/510596-019-09883-y

ORIGINAL PAPER

®

Check for
updates

Efficient use of sparsity by direct solvers applied to 3D
controlled-source EM problems

5

Patrick R. Amestoy'2 . Sébastien de la Kethulle de Ryhove®# . Jean-Yves L’Excellent?> © . Gilles Moreau® -

Daniil V. Shantsev®

Received: 10 January 2019 / Accepted: 20 August 2019 /Published online: 13 September 2019
© Springer Nature Switzerland AG 2019

Abstract

Controlled-source electromagnetic (CSEM) surveying becomes a widespread method for oil and gas exploration, which
requires fast and efficient software for inverting large-scale EM datasets. In this context, one often needs to solve
sparse systems of linear equations with a large number of sparse right-hand sides, each corresponding to a given
transmitter position. Sparse direct solvers are very attractive for these problems, especially when combined with low-rank
approximations which significantly reduce the complexity and the cost of the factorization. In the case of thousands of
right-hand sides, the time spent in the sparse triangular solve tends to dominate the total simulation time, and here we
propose several approaches to reduce it. A significant reduction is demonstrated for marine CSEM application by utilizing
the sparsity of the right-hand sides (RHS) and of the solutions that results from the geometry of the problem. Large gains
are achieved by restricting computations at the forward substitution stage to exploit the fact that the RHS matrix might
have empty rows (vertical sparsity) and/or empty blocks of columns within a non-empty row (horizontal sparsity). We also
adapt the parallel algorithms that were designed for the factorization to solve-oriented algorithms and describe performance
optimizations particularly relevant for the very large numbers of right-hand sides of the CSEM application. We show that
both the operation count and the elapsed time for the solution phase can be significantly reduced. The total time of CSEM
simulation can be divided by approximately a factor of 3 on all the matrices from our set (from 3 to 30 million unknowns,
and from 4 to 12 thousands RHSs).

Keywords Controlled-source electromagnetics (CSEM) - Marine electromagnetics - Numerical modeling - Direct solver -
Multiple sparse right-hand sides

Mathematics Subject Classification (2010) 15A06 - 15A23 - 65F05 - 65F50 - 65Y05 - 65Z05 - 68U20 - 68W10 - 78A25 -
86-04 - 86-08 - 86A20 - 86A22

1 Introduction

It was demonstrated in 2002 that marine controlled-source
electromagnetic (CSEM) method could be used to detect
offshore hydrocarbon reservoirs [15]. Over the years, the
CSEM method has become an established tool for oil and
gas exploration [11], and the technology development keeps
going at a high pace [19]. Successful interpretation of
the growing volume of geophysical CSEM data, including

0< Jean-Yves L’Excellent
Jean-Yves.L.Excellent@mumps-tech.com

Extended author information available on the last page of the article.

also land EM data [29], requires efficient large-scale 3D
electromagnetic (EM) modeling algorithms.

Among various approaches to handle 3D EM problems,
the most popular is to solve a sparse linear system of
frequency-domain Maxwell equations built using finite-
difference or finite-element methods [8, 10]. Recent
applications of the Gauss-Newton inversion algorithm to
large-scale marine CSEM problems indicate that it is very
efficient and will likely become the standard inversion
approach in the nearest future [23]. The Gauss-Newton
method requires that the linear system is solved for all
transmitter positions in a given survey, often resulting in
several thousands of right-hand sides. The system of linear
equations then takes the form MX = S, where M is a sparse
symmetric matrix of size n x n, while the RHS matrix S

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-019-09883-y&domain=pdf
http://orcid.org/0000-0001-5804-993X
mailto: Jean-Yves.L.Excellent@mumps-tech.com

1238

Comput Geosci (2019) 23:1237-1258

and solution matrix X are of size n x m. Here the system
size n can be up to several millions, while the number of
right-hand sides m is up to several thousands.

Such systems can be solved with iterative methods which
in general are relatively cheap in terms of memory and
computational requirements, but may have convergence
issues [8, 10]. In comparison with direct solvers, their cost
increases quickly with the number of right-hand sides, i.e.,
with the number of EM sources. With direct methods, the
matrix M is factored as a product LDLT, where L and D are
respectively lower triangular and diagonal matrices. Then,
for a given set of right-hand sides S, one has to perform the
so-called solve phase via a forward substitution solving a
lower triangular system (LY = S), followed by a diagonal
resolution (DZ = Y) and finally a backward substitution
(LTX = 7).

Direct methods are numerically robust. They are well
suited to multi-source simulations since once the matrix
factorization is performed, only the solve phase needs be
applied on all the right-hand side vectors. The complexity
of the sparse matrix factorization phase can be a bottleneck
for large 3D problems, for which the number of floating-
point operations scales as O (n?) (see [16]). The number
of nonzero entries in the factors, which also defines the
complexity of the solve phase, scales as O (n*/3). However,
in the context of CSEM applications, it has been shown [27]
that using block low-rank (BLR) format and related
approximations significantly improves the performance of
the direct approach and reduces the factorization complexity
from O (n2) to O (n*/3) fora simple BLR format [1]. Sparse
direct methods rely on a sequence of partial factorizations
of dense matrices F referred to as fronts in the remainder
of this paper. Although the matrix F cannot in general
be expressed as the low-rank product of two matrices, the
matrix F can be reordered and partitioned in a simple flat
2D blocking format. Using this so-called BLR format, it
has been proved in [1] that in many applications (e.g., those
coming from the discretization of elliptic partial differential
equations) the off-diagonal blocks of each F' matrix can
be approximated by the product of two matrices of low
rank. This low-rank representation is then used to reduce
the complexity of the factorization. A very nice feature of
this approach is that the accuracy of the approach relies
on a unique numerical threshold, so-called epLr, given
by the user that controls the accuracy of each low-rank
representation.

Thanks to the improvements of the factorization phase
due to low-rank compression (further improved in [2]
with respect to [27]), and since CSEM modeling involves
thousands of right-hand sides, the time needed to perform
the complete CSEM simulation becomes largely dominated
by the solve phase of the direct solver. Indeed, the

@ Springer

complexity of the solve phase, O(m x n*3), becomes
significant compared to that of a low-rank factorization.

To improve the performance of the solve phase with
many right-hand sides, we first explain how to exploit
the sparse structure of the CSEM source matrix, which is
essentially defined by positions of transmitters in the 3D
domain. We also exploit the solution sparsity, i.e., the fact
that the solution does not need to be computed in the whole
geometrical domain. It was shown in [17] that the nonzero
structure of the matrix Y resulting from the forward
substitution can be predicted, and exploited to limit the
number of operations. This was also referred to as tree
pruning in [28]. In the context of computing selected entries
of the inverse of a matrix [4], the notion of intervals
combined to an appropriate column permutation of the
right-hand sides was introduced. We will explain how such
techniques can be applied or adapted to the context of
CSEM simulations.

In this paper, we also introduce several new algorithms
and techniques to improve the performance of the solve
phase on modern parallel architectures. In a distributed
memory parallel environment, the performance of direct
solvers strongly depends on how the computational tasks
are mapped onto the computer nodes. Mapping algorithms
control the equilibration of the work between processors and
are typically driven by metrics from the factorization phase.
We show that using workload metrics from the solve phase
improves the overall performance of the CSEM simulation.
Finally, to enhance arithmetic intensity and parallelism,
large blocks of right-hand sides must be processed
simultaneously. For this approach to be efficient, we show
that locality of computations should be improved during
the solve phase, especially when several threads are used
within each distributed memory process (MPI process). This
corresponds to an hybrid distributed-multithreaded setting,
well adapted to the clusters of multicore processors that we
target in this type of applications.

This paper is organized as follows. In Section 2,
we describe our frequency-domain finite-difference EM
modeling approach in the context of nested dissection, and
focus on the structure of the right-hand sides. We also
describe the test problems and emphasize the cost of the
solve phase of a direct solver based on a multifrontal
approach [13, 14]. The proposed algorithms are more
general and could also be applied to other sparse direct
methods. A brief background on direct solvers, with a
focus on the solve phase is then provided. In Section 3,
we explain how the sparse structure of the right-hand sides
(RHS) may influence the solve phase and can be used
to reduce the amount of computations. In Section 5, we
discuss parallel aspects of the solve phase. First, we propose
strategies to balance the workload for the solve phase. Then,

Comput Geosci (2019) 23:1237-1258

1239

we show that RHS sparsity and parallelism are contradictory
objectives and propose ways to group RHS columns
together to recover some parallelism. While RHS sparsity
can only be exploited during the forward substitution, we
show in Section 4 that the same ideas can be transposed to
the backward substitution, leading to further computational
gains due to solution sparsity. Section 6 studies and
illustrates the effects of each of the proposed algorithms on
the performance of the solve phase. The global results are
summarized in Section 6.3, also showing a comparison of
the direct approach and a conventional iterative approach.

2 Background and motivations
2.1 Finite-difference electromagnetic modeling

The frequency-domain Maxwell equations in the conductive
earth in a presence of a current source J can be
approximated as follows:

VXV XE—-ioucE =ioul, D

where E is the electric field, ¢ is the conductivity tensor,
is the magnetic permeability, and w is the frequency. Using

Fig. 1 a Schematic example of a
CSEM survey with locations of
receivers (triangles) and
transmitter positions (circles).

b Entries of interest in the
solution are those inside a “box”
centered around the
corresponding source Syk-.

O—0O0—O0 C'AO O—0—0 O—0O—1CO OAO 9—0 @
Iy | f
X (@] i)

O

finite differences on a grid of size N = Ny x Ny x N,
corresponding to the discretization of the physical domain,
the electric field has three components Ey, Ey, andE, at
each grid point and can be approximated by solving linear
systems of the form MX = S, where M is a sparse matrix
of order n = 3N and S results from the right-hand side
in Eq. 1. M can easily be made symmetric. Let us now
discuss the properties of the RHSs and of the solution that
result from the geometry of marine CSEM surveys, and the
inversion approaches used to analyze CSEM data.

The CSEM receivers are typically placed at the sea-
floor in a regular grid with 1-3-km spacing, while
the transmitter is towed above the receiver lines. To
achieve illumination of subsurface with different transmitter
orientations, two orthogonal directions of towlines are often
chosen. A schematic picture of such a CSEM survey
outline is presented in Fig. la, where receiver locations
are indicated with triangles. Circles along the towlines
indicate transmitter locations: it is usually assumed that
distinct transmitter positions are spaced by 100 m. Since the
transmitter is moving, while seabed receivers are fixed, the
number of transmitters n, is much larger (by 1-2 orders of
magnitude) than the number of receivers n,..

The number of right-hand sides is determined by the
inversion algorithm used to analyze CSEM data. The

O

(0]
0 <-— Tx02x

D

€

0]

¢ Entries of the solution may (0]
also be limited to a subset of 0—0—0-O0AOO00O
nodal points uniformly o)
distributed in the domain o]
Tx03y TX02y Tx01y
(a) Sources layout
S* k
. . °
. ° ° °
° ° ° ° °
° ¢ & e
° ° ° ° °
Box ° . ° ° °
° ¢ o |
° ° ° ° °
° . ° ° °
......................... °
] ° ° °
. ° ° °
° ° ° °
(b) Boxing (c) Sampling.

@ Springer

1240

Comput Geosci (2019) 23:1237-1258

gradient-based (BFGS) scheme [31] is relatively cheap:
at each iteration one needs to solve a linear system of
equations for source terms placed only at the receiver
positions (due to reciprocity). In this paper, we will
however focus on the more powerful Gauss-Newton scheme
that is expected to soon become the prevailing inversion
method [23]. In the Gauss-Newton method, the sources
should also be placed at each transmitter position, i.e., the
total number of RHSs is becoming much larger since n; >
n,. Note also that the transmitter is usually towed within 30—
100 m above the seafloor. Therefore, all RHSs (due to both
transmitters and receivers) belong to a narrow depth interval
near the seafloor—the property we shall utilize later in the
article.

The right-hand sides are usually very sparse since they
describe a source term that is localized in space. A point
transmitter is often represented by placing source terms at
2 x 2 x 2 = 8 nearest nodes in 3D problems, i.e., a RHS
will have only 8 nonzero elements. In marine CSEM, a
horizontal electric-dipole transmitter is often an extended
antenna of ~ 300 m length, rather than a point. In that
case, the number of nonzero elements will be slightly larger
(e.g., 16 or 24), but this complication will have only minor
effect on our results, thus for the sake of simplicity we shall
stick to considering point sources with 8 nonzero elements
in RHSs.

The initial ordering of RHSs (also defining the order of
the columns in X) usually reflects the transmitter trajectory.
In this article, the ordering of transmitter positions obeys the
following simple rule (see Fig. la). We start with towline
Tx01x, and there go over all transmitter positions in the x
direction (see Fig. 1a). Then we switch to towline Tx02x
and follow the same ordering, and so on until we reach
the last x-directed towline. Then we switch to y-directed
towlines, starting with TxOly, and for each of them go
over all transmitter positions in the direction of y-axis. As
we shall see below, this continuous ordering of RHSs is
not optimal for the solver performance, and considerable
gains can be achieved by appropriate reorderings. Strictly
speaking, in the Gauss-Newton scheme, one also has
to handle right-hand sides related to receiver positions.
However, their number is much smaller. Therefore, for the
sake of simplicity, we have not included them in the analysis
below.

Only a subset of entries in the solution X usually needs to
be computed when inverting marine CSEM data. For each
column k and source vector Sy, only the entries in a box
with a square section and centered around S,; are needed
(see Fig. 1b). The box excludes the top of the domain since
it corresponds to the air layer for which the resistivity is
known. The box also excludes the water layer since the
water conductivity is usually measured during the CSEM

@ Springer

survey. The EM fields decay with increasing offset between
transmitter and receiver and eventually drop below the noise
level. We shall assume that the maximum offset for CSEM
data is 12.5 km and therefore the lateral extent of the box
will be 25 km x 25 km. All the regions beyond this box,
in particular, the perfectly matched layers at the edges, can
be excluded from the computed solution. Depending on the
problem, the box may represent approximately one half of
the whole computational domain.

The CSEM Gauss-Newton inversion is an ill-posed
problem. It therefore requires strong regularization that
typically favors smooth solutions. Another way to make
inversion more robust as well as faster is to reduce the
number of inversion parameters. Since the CSEM method
resolution decreases with depth, it is common to use fewer
inversion parameters in deeper formation layers. As a result,
the solution X in some regions may be required for a coarser
sampling than the grid used to build the system matrix.
In Section 6.1.2, we assume that the solution could be
required on a uniformly distributed subset of nodal points
(see Fig. 1c), where only every 20th or every 100th point is
included into the subset.

2.2 Impact of the source structure

In this section, we relate the sparsity in the source vectors
S to geometric properties of the underlying application and
provide some preliminary intuitions on how sparsity will
be used to reduce the solver complexity. The exploitation
of sparsity in the solve phase will then be the object of
Sections 3 and 4, for the forward and backward substitution,
respectively.

The application of direct solvers to linear EM systems
built on finite-difference methods is often illustrated by
a hierarchical domain decomposition based on nested
dissection [16], where the mesh is divided into subdomains
and separators. A separator can be defined as a set of nodal
points which splits the domain (or a given subdomain) into
two balanced and disjoint subdomains. In a regular 3D grid
such as the one represented in Fig. 2, the separator shapes
are planes with normals in the x—, y-, or z-directions. In
Fig. 2a, we illustrate using different colors the separator
planes that define the red cube in the upper right corner of
the domain.

Since the source term is geometrically localized, all
nonzero elements of a source vector usually belong
to the same subdomain. The nested dissection creates
independence between disjoint subdomains. Hence, the
source contribution during the forward substitution will not
affect any other subdomain. In other words, the computation
of a column of Y for a given source is only concerned
by the associated subdomain and the fop separators. In

Comput Geosci (2019) 23:1237-1258

1241

AN

—

P

y

.

(a) Initial source order.

A 7

y

.

(b) Optimized source order.

Fig.2 a A computational 3D domain where sources (marked with e or
o) are connected with a line representing the transmitter trajectory. A
hierarchical domain decomposition with 2D plane-shaped separators
is applied. The top separators leading to the red subcube containing the
first source (o) are marked with different colors. The red crosses show
where the transmitter trajectory crosses the main separator. b The
line connecting source positions indicates a new source ordering that
minimizes the crossings of top separators

Fig. 2a, the contribution of the first source is represented
by its subdomain (red cube) and the top separators (colored
planes), while all other parts of the domain will remain
out of its area of influence. Section 3.1 is dedicated to the
exploitation of this feature.

Furthermore, we will show that the initial ordering of
the sources is not optimal with respect to the operation
counts, especially if one aims at processing many sources
simultaneously. A simplified example of initial ordering is
depicted in Fig. 2a, showing the source locations (circles)
and the transmitter trajectory (line connecting the sources).
One important remark here is that the transmitter trajectory
crosses the top separator many times. In Section 3.2, we
will show that the optimal ordering will be such that the
transmitter trajectory has the smallest possible number of
crossings of the top separators. The transmitter trajectory
of Fig. 2b indeed possesses most of the properties of the
theoretically optimal solution.

2.3 Characteristics of the models and computing
environment

Our study is based on realistic anisotropic earth resistivity
models characteristic for marine CSEM applications. The
models are discretized using the finite-difference Yee grid
[30] that places all electric and magnetic field components
at different positions within a grid cell to ensure central
differences, and hence higher accuracy. The grid had a
uniform core in the middle, and growing cell sizes at
the model edges and an air layer on top. Properties of
system matrices and right-hand sides resulting from these
discretizations are summarized in Table 1.

The matrices H3, H17, and S21 are described in detail
in [27]. All matrices have a regular global structure that
depends on the grid shape. Their nonzero structure typically
looks like diagonals at distances 3 x Ny and 3N, x Ny, from
the main diagonal, for a grid of dimension (N, Ny, N;).
The two H-matrices are based on a half-space 1 £2m
model with a 100-m water layer and a pizza-box resistor
of 100 2m. The H3 matrix is based on a coarser grid,
with cell sizes (in the central part) double of those used
for the H17 matrix. The S21 matrix is obtained from the
SEAM (SEG Advanced Modeling Corporation) Phase 1
resistivity model representative of the Gulf of Mexico: it
has a rough bathymetry, hydrocarbon reservoirs, and salt
bodies. The DB30 matrix is built from a resistivity model
corresponding to a CSEM survey “Daybreak” acquired in
Alaminos Canyon, Gulf of Mexico [20]. As an illustration
of the structure of the matrix that will be processed by the
direct solver, we show in Fig. 3 the nonzero structure of
matrix H3 permuted with a nested dissection ordering.

The RHSs are generated by listing all transmitter
positions using the ordering indicated in Fig. 2a. For
example, for the SEAM S21 matrix, the survey layout
suggested 36 towlines, 40 km long, in one direction, and
29 towlines, 35 km long in the orthogonal direction. The
distance between towlines was 1 km. We downsampled the
transmitter positions to 200 m of spacing, which resulted in
36 x 201429 x 176 = 12340 RHSs. RHSs for the daybreak
matrix were given by the real survey that included 12
towlines of 60 km length and 2 km apart, and 2 orthogonal
towlines of 30 km length, 4 km apart. For each system, the
number of right-hand sides m reaches several thousands and
their density D(S) is below 10 nonzeros per column.

We also report in Table 1 the analysis, factorization, and
solve times of the sparse direct solver MUMPS using BLR
compression [2] at precision €gLr = 10~7 on the CALMIP
supercomputer EOS (www.calmip.univ-toulouse.fr), which
is a BULLx DLC system composed of 612 computing
nodes, each composed of two Intel Ivybridge processors
with 10 cores (total 12 240 cores) running at 2.8 GHz,
with 64 GB of memory per node. As mentioned earlier, the

@ Springer

www.calmip.univ-toulouse.fr

1242

Comput Geosci (2019) 23:1237-1258

Table 1 Characteristics of the systems of equations M X = §

Model System Grid shape Matrix M(n x n) RHS S(m x n) Timings in seconds (percentage of total time)

Ny x Ny x N; n DM) m D(S) T, Ty T Tiotal
Shallow H3 114 x 114 x 74 2,885,112 12.9 8000 7.5 10 (1 %) 34 (4 %) 806 (95 %) 850
water H17 214 x 214 x 127 17,448,276 129 8000 6 56 (1 %) 378 (8 %) 4133 (91 %) 4567
SEAM S21 181 x 160 x 237 20,590,560 12.9 12340 9.5 68 (1 %) 476 (6 %) 7819 (93 %) 8363
DayBreak DB30 230 x 422 x 102 29,700,360 12.9 3914 7.6 106 2 %) 765 (15 %) 4246 (83 %) 5117

Here n = 3Ny x Ny x N is the order of M, m is the number of columns of the right-hand side matrix S, D(M) and D(S) are the average
numbers of nonzeros per column for M and S, respectively. The resolution times for the different phases of a sparse direct solver using 90 MPI
processes and 10 threads per MPI process are also reported: 7;, for analysis, Ty for factorization, Ty for solve, and Tioa1 = Ty + T + T for the

entire resolution

Italicized entries emphasize the high relative cost of the solve phase

introduction of low-rank approximations has significantly
reduced the factorization time [27], and the initial solve time
T; (not using the work presented in this paper) has become
predominant. Note that the solve phase was performed by
blocks of size BLK = 1024 for H3 and BLK = 512 for
H17, S21, and DB30. Using larger blocks was not possible
as the memory required to process all right-hand sides in
one shot would have exceeded the available memory.

In the following section, we give some background on
the solve phase of sparse direct solvers, before explaining

»x10°

3‘ BT Bt lerelTE ira, e

e SCIewme
1.5 2
nz = 37148644

Tvaw | Svawi =l

%108

Fig. 3 Nonzero structure of matrix H3, permuted with a nested
dissection ordering

@ Springer

in Section 3 how to take advantage of the right-hand side
sparsity resulting from the geometrical structure of CSEM
applications.

2.4 Solve phase algorithms

We first describe the algorithms used to solve the linear
systems MX = S, where M = LDL, from an algebraic
point of view. We also explain how they can be interpreted
and correlated to the structural and geometrical properties
of CSEM applications.

L is a unit lower triangular sparse matrix of order n,
whereas S is an n x m matrix of right-hand sides. As
mentioned earlier, the first part of the solve algorithm
consists in performing the forward substitution, which
consists in solving the system LY = S.

For each column k, the first version of our forward
substitution algorithm is a scalar two-loop algorithm limited
to nonzero entries in L.

Algorithm 1 Scalar two-loop algorithm.

Yik (_L_IY*k
forj=1,...,n—1
fori > j + 1 suchthat [#0
Yik < Yik — Lijyik

Algorithm 1 assumes that Y, has initially been set to
S«x. This way, it is expressed only in terms of modifications
of Y. The algorithm exploits the fact that the diagonal of
L is the identity, and that L is sparse, i.e., many of the [j;
entries are zero. Based on the example of Fig. 4, we explain
in the following how sparsity in L can be exploited in a more
efficient way by limiting a priori the iterations on the i loop
and will reformulate the algorithm to illustrate it.

Comput Geosci (2019) 23:1237-1258

1243

Figure 4a gives a simplified version of the CSEM
application, where we consider a tiny 3 x 3 x 3 grid, with one
degree of freedom for each nodal point and used a 7-point

/ /
5 8
o
15 6 6
/ /
18 7 9
/ /
12 23 3
113 21 4
/ / /
16 24 7 y
s/ / / £
10 19 1 z

{1y {2y {4} {5} {10} {11} {13} {14}

(b) Assembly/separator tree.

1

10

15

20

25

X
Xwm= X

X=X
X=X

XX =X
XXX
X XX

Hﬁ
=

(c) Structure o

Fig. 4 a A 3D regular mesh based on a 7-point stencil; each node
is numbered according to the nested dissection algorithm following a
postordering. Each node marked by double circles is an elementary
source modeling two stacked sources. b Resulting separator tree;
numbers in brackets show the sets of variables to be eliminated at
each node. ¢ Nonzero entries in L: (x) corresponds to entries already
nonzero in M and (f) to new entries (fill-in) resulting from the
factorization of M. Surrounded by two blue boxes are the entries
concerned when processing node u7 of the separator tree

stencil to represent the mesh. The corresponding matrix is
represented in Fig. 4c. For the right-hand side matrix S,
we consider only eight sources with a single nonzero per
source. The sources are placed at nodal points 2, 5, 14, and
17, which all belong to the same z-plane. This is to illustrate
the fact that the transmitter trajectory along the seafloor is
usually quite horizontal. The initial ordering of the sources
is assumed to be 2-17-5-14, followed by 2-5-17-14. This
ordering matches the one shown in Fig. 1a and is convenient
for illustrative purposes. The matrix S has the structure
depicted in Fig. 6a. We will use this matrix of sources again
in Section 3.

In Section 2.1, we described the nested dissection process
as a hierarchical domain decomposition. Performed prior
to the factorization, it can also be regarded as a special
numbering of nodal points to reduce fill-in (an initial mj; =
O turning into an entry /;; # O in the factor matrix
L). Initially, the process builds a separator that divides
the domain into two disjoint and independent subdomains,
see Fig. 4a. It numbers the variables of each subdomain
consecutively and the variables of the separator last. This
can also be expressed as a root node u 5 (separator) and two
subtrees (subdomains) in the separator tree of Fig. 4b. The
two subtrees characterize the aforementioned independence
between the variables of both subdomains which is reflected
by the empty square in the structure of L corresponding
to rows [10, 18] and columns [1,9] in Fig. 4b. From
Algorithm 1, the computation of the components of Y inside
each subdomain will then be independent from each other.
For i € [10,18] and j € [1, 9] we have [;; = 0 so that, for
any k, and for any i1 € [1,9] and i € [10, 18] component
Vi,k does not depend on component y;,x. The separator tree
thus also characterizes the parallelism of the solve phase.
The nested dissection process is reproduced recursively on
both subdomains, preserving the mentioned properties.

In the context of the multifrontal method, each node of
the separator tree may be represented by a dense matrix
called front which is used to compute a part of the L factor,
as illustrated in Fig. 4c for node u7 and in Fig. 5. Each front

Lll

Lo

Fig.5 Structure of the factor associated with a node from the separator
tree

@ Springer

1244

Comput Geosci (2019) 23:1237-1258

is associated with two sets of variables: the g variables of
the separator (also called fully summed variables), which
are used to compute entries of the Y or X solutions; and the
r off-diagonal variables (or non fully summed variables),
which are used to compute contributions. Data computed
at each node will be used by the parent (resp. children)
fronts in case of forward (resp. backward) substitution.
More precisely, the forward substitution is a bottom-up
process which performs, for each front, the two block
operations Y| < Ll_llYl and Yo < Y, — LYy, whereas
the backward substitution is a top-down process which
performs, for each front, the block operations X; <« X; —
LZTIX2 and X; <« LI_ITX1. Here, Y, Y7, Xi, and X, are
partial matrices of Y and X. They only contain the rows
of Y and X corresponding to the g + r rows of the front,
and subscript 1 (resp. 2) is associated with the g (resp. r)
variables in the diagonal (resp. off-diagonal) part of the
front. As follows from the properties of the separator tree, if
two fronts belong to different subtrees, the computations at
those fronts can be done in parallel.

We will use the notation u(j) to denote the node of the
separator tree containing variable j. We have, for example,
u(l4) = uqp, or u(25) = uys5. Thanks to the compact
representation of the structure of the factors at each node
(see Fig. 5), operations reported in Algorithm 1 can be
performed on dense matrices. The condition “/;; # 0” can
then be replaced by “i in the structure of the factors at node
u(j),” as will be indicated in Algorithm 2. Furthermore,
in the context of sparse RHSs, some entries of Y, might
remain equal to zero. Therefore, Algorithm 1 should only
perform the update of yjx for nonzero entries yjk, leading to
Algorithm 2.

Algorithm 2 Nodal algorithm.
Yk < L1V
forj=1,...,n—1
fori in the structure of the factors at node u(j),i > j
if(yjx #0) yik < Yik —lijyjk

Similar to Algorithm 1, we assumed in Algorithm 2
that Y, has been set to S, for each column k prior to
executing the algorithm. Note that in our example, the
numbering of the node identifiers uy, us, ..., u1s obeys
the following postordering rule: all nodes in any subtree
are numbered consecutively and precede the number for
the root of the subtree. Moreover, any subtree of 7' rooted
at node u (which we denote as T'[u]), corresponds to
a subdomain created through the nested dissection. For
example, T [u7] corresponds to the subdomain on the right
of the first separator (#15) and is composed of the variables

@ Springer

{1,2,3,4,5,6,7,8,9}. Note also that the resolution of the
diagonal system DZ = Y can be performed in-between the
forward and the backward substitutions or can be combined
with one of these phases by computing each component as
zik = Yik/dii.

3 Exploiting RHS sparsity during the forward
substitution

In the previous section, we have shown that thanks to the
knowledge of the frontal matrix structure at each node of
the separator tree, testing nonzero entries in the rows i of
column L, ; was not needed and Algorithm 1 could be sim-
plified. Furthermore, since S is sparse, some elements yjk
in Algorithm 2 remain equal to zero. Similarly, one would
like to avoid such systematic testing for yjx 7# 0 at each
update of the nodal algorithm (Algorithm 2). For efficiency,
we also want to perform operations on a block of columns
and thus to a priori identify blocks of columns sharing the
same structure and allowing simultaneous operations.

We describe the graph structure that needs to be
introduced and exploited to avoid systematic testing and
relate this structure to the geometric properties of the
CSEM application. We focus in this section on the forward
substitution (LY = S), but the same ideas can be applied
to the backward substitution (L”X = Z) when a partial
solution is needed, as will be discussed in Section 4.

Making efficient use of the sparsity in the RHS matrix is
a three-step process described in the next subsections:

— Firstly, exploit sparsity within the columns of the
sources (i.e., detecting empty rows), referred to as
vertical sparsity

— Secondly, exploit sparsity within the rows (i.e., detect-
ing nonzero blocks within non-empty rows), referred to
as horizontal sparsity

— Finally, find a suitable column ordering to improve the
performance of horizontal sparsity

3.1 Vertical sparsity

Exploiting vertical sparsity is related to the sparsity of the
source vectors in the CSEM application, which will leave
many rows in 'Y empty. It makes use of the properties proved
in [17] and was also formulated in terms of paths using the
tree structure in [18].

In Fig. 2a of Section 2.1, we illustrated the fact that the
contribution of each source is limited to its local subdomain
(the red subcube) and to the top separators. For a given
source, or equivalently a column Sy of the RHS matrix
S, the aforementioned contribution corresponds to nonzero

Comput Geosci (2019) 23:1237-1258

1245

components of Y. This observation provides guidance on
how to sweep the separator tree. In the following, we explain
how the separator tree can be used to efficiently characterize
nonzero entries in Y so that the loop on index j can be set
up a priori without need for any checks to restrict the subset
of indices.

Figure 6a represents a matrix S composed of 8 right-
hand sides associated with 8 sources (Fig. 4) placed at nodes

12345678

ul uy

1
2 | x X u2
3 us uz [X X
4 Ug
5 X X us “s
6 ue
H Ug
8 ur us X X
9
10 ug Uue
11 ug
12 u10 ur
13 U1
S = 4 X X | u12 us
15 u1s
16 U9
17 X X ui4
18 uio
<
2
21 -
b5 U12] X X
23 uis w13
24
25 u4| |x X
26
27 u1s

(a) Structure of S

1
2 X X uz
3| f K uz u2 | X X
g X X zi us|f !
6 f f ue
T
8 ur -
o |f 1 17 vel P9l
10 us ug f !
11 ug
12 u10 ur | f f ff

Y 13 Uil

— 14 X X | w12 us

15 f f | w13
16 b b ug
17 X f X f | u1a
w_f f fF w10
19 | TITFTT /T uir
wl1ririis '
21 J I J U1
2 | FTIITILT e a X
B\ FILITFTT [us g f s
A
25 u X X
6 | TIFFTTIT N d !
2| FIITTTLS ws| £ | f| 5| 7| F| |5

(b) Structure of Y = L—1S

(c) Pruned tree T (S)

Fig. 6 a Structure of the RHS matrix S (associated with the sources
shown in Figure 4) and its node representation (right); nonzeros are
represented with x. b Structure of Y after the forward elimination; fill-
in is represented with f (left and right). ¢ Corresponding pruned tree;
pruned nodes are dotted, and active nodes, i.e., nodes with sources, are
shadowed

2, 17,5, 14, 2, 5, 17, and14, in this precise order. In our
simplified model and for the sake of clarity, we considered
a single nonzero element per source. To simplify the figure,
we also provide a compact representation of matrix S where
each row corresponds to the set of variables from a node of
the tree. Finally, each node whose set of variables includes
at least one nonzero from matrix S, i.e., each node u (i) for
which there exists a column index k such that s 7~ 0, will
be called an active node. Active nodes have been filled in
the separator tree represented in Fig. 6¢ corresponding to
our simplified model.

As the solve algorithm proceeds, new nonzero entries
(so-called fill-in) with respect to the original entries of S
appear in Y. Given the initial nonzero structure of S, [17]
and [18] showed that it is possible to predict the nonzero
structure of Y. In our context, [18, Theorem 2.1] can be
translated into the following:

Theorem 1 When solving LYk = Sk, the structure of the
vector Yy is given by the union of the variables in nodes on
paths in the tree T from the set of active nodes of Sk up to
the root.

As a consequence, a component yjx will be different from
zero if and only if six # O or there exists an sjk # 0 such
that either u(j) = u(i) or u(j) is a descendant of u(i) in
T. The update in Algorithm 2 is only applied for variables
j belonging to such nodes. This a priori knowledge gives
the possibility to prune nodes from the separator tree. This
process is referred to as tree pruning in [28]. As an example,
take S, from Fig. 6a with 521 # 0 and u(2) = u».
Then every nonzero component of Y, belongs to nodes that
are on the path from u» to u15. This algebraic perspective
translates into the geometrical interpretation illustrated in
Fig. 2a.

Furthermore, to enhance the performance, computation
should be done on multiple columns at the same time.
In doing so, one can benefit from the use of BLAS 3
operations [12] that can almost reach the peak performance
of a processor. Theorem 1 is then applied for the union of
the set of active nodes of each column (see Section 2.3). The
tree resulting from the pruning process is called the pruned
tree and, if we consider the whole matrix S as one block, it
is noted 7, (S) and shown in Fig. 6c. Therefore, Algorithm
2 can be replaced by Algorithm 3.

Algorithm 3 Pruned tree nodal algorithm.

Y < L1y
for Y, #0,1<j<n-—1 (ie,u(j) € T,(S))
for i in the structure of the factors at node u(j),i > j
Yie < Yie — 1ijY s

@ Springer

1246

Comput Geosci (2019) 23:1237-1258

In this algorithm, Y is the jth row of Y and Y, # 0
means that at least one of its component is different from 0.
In practice, Algorithm 3 is implemented by processing
T,(S) from bottom to top and performing the BLAS 3
operations Y| <« L1_11Y1 and Y, < Y> — LY at each
node, using the notation of Section 2.4. In Fig. 6¢, each
pruned node corresponds to an empty row in Y. This is why
sparsity is said to be exploited vertically.

3.2 Horizontal sparsity and column ordering

Algorithm 3 assumes that all columns are processed at each
node of the pruned tree. However, sources do not share
the same structure and thus it is possible to further exploit
sparsity by reducing the number of columns on which
Algorithm 3 is applied. This will be referred to as horizontal
sparsity. To do so, we introduce the notion of active columns
and node intervals. We then explain why column orderings
introduced for computing selective entries of the inverse of
a matrix [4] can be effective in our context to reduce the
number of operations. We illustrate these aspects in Fig. 7
on the same simplified example with 8 sources.

Fig.7 a A 2D horizontal 4

The subset of columns of S that possesses at least one
nonzero element at a given node u is called the set of active
columns at node u. For example for node u5, corresponding
to row us in Fig. 7b (left), there are only two active columns:
3 and 6. Ideally, one would like to operate only on these
two columns, but this would either require a complex data
reorganization, or the computation of the columns one after
the other. The latter would not be efficient since processing
a block of columns simultaneously is much faster that
processing them one by one. What can be done at no extra
reorganization cost is to consider a subinterval of columns
including the first and the last indices of the active columns
at that node. The intervals are thus defined for each node of
the separator tree. In Algorithm 3 and for the computation
of component Y, * is replaced by the interval defined for
node u(i). For example, the active columns for node us
are 3 and 6; thus, the interval at node us5 only includes
four columns: 3, 4, 5, and 6, rather than all 8 columns.
With intervals, we reduce computation on columns and thus
exploit horizontal sparsity.

Clearly, the size of the intervals is influenced by the
ordering of the columns. The idea is to order successively

(D]

top-layer section from Fig. 4a,

®

O

©

located on the plane containing
the source positions. Colored
lines are the traces of the

A
[
1
1
separators of Fig. 4a. The ;

wz/’

6

v

A\
.y

PO

Dle

1 e

\}@M

numbering of nodal points has
been omitted for clarity. On the
left: the initial column ordering
(1-2-3-4-5-6-7-8) corresponding
to nodal points 2-17-5-14-2-5-

17-14 in Fig. 4a. The plain and
dashed arrows refer to the
transmitter trajectories, firstly in
the x direction and secondly in
the y direction. On the right: the
postorder (PO) column ordering
(1-5-3-6-4-8-2-7). The plain
arrow indicates the modified
transmitter trajectory. b
Illustration of horizontal sparsity
with node intervals and
influence of the column
ordering on sparsity. The
structure of Y with initial (left)
and postorder (right) column
orderings is shown

(a)

@ Springer

PN PN
© O, v O
123456738 15364827
Ul ul
uz |X X u2 XX
us | f f ug | f|f
Uq Uq
us X X us X[X
Ug f ! ue ff
ur | f | f| (FS PO ur | f\FIf[F
us — us
ug ug9
u10 u10
Uil Uil
uU12 X X u12 XX
u13 f f u13 F|f
uigl X[| f X|f U4 FIf XX
uis| fN\F{FVFN PP F urs| AP\ PP F|F

Comput Geosci (2019) 23:1237-1258

1247

columns with close initial nonzero structure or, equivalently,
to limit the crossing of top separators as was mentioned in
relation to Fig. 2b.

The postordering rule introduced in Section 2.4 was used
to order the nodes of the elimination tree. It also leads to
a postordering of all the variables. The permutation used
in this study will exploit this postordering of the variables
and is built as follows. For a column k£ of S, we define
urep(k) as the node among the active nodes for column Sy
({u(@), sik # 0}) that appears first in the postordering of the
tree. We have for example uyep(1) = up and urep(2) = u14
in Figs. 6a (and 7b, left), and call urep(k) the representative
node of column k. Now S is said to be postordered if and
only if: Vky, k2, 1 < ki < ko < m, urep(ky) appears before
(or is identical t0) urep(k2) in the postordering. In other
words, the order of the columns Sy and the postordering of
their representative nodes urep (k) are compatible.

In Section 2.1, we mentioned that the transmitter
trajectory should minimize the number of crossings of
top separators. In Fig. 7b, the postorder trajectory is also
interpreted in terms of nonzero structure of S and Y.
Namely, it corresponds to ordering the columns of S in such
a way that two successive columns have similar nonzero
structure (in Y). This was not the case with the initial
transmitter trajectory of Fig. 7a, which resulted in large
interval sizes for rows u7 and u3 (for example) (see Fig. 7b
(left)). The postorder heuristic addresses this problem (as
shown in Fig. 7b (right)). It is here optimal since the
gray areas representing the intervals no longer include zero
entries. Note that, for the purpose of our illustration, we
have considered sources with only one nonzero entry and
that in this case the postorder heuristic has been shown to be
optimal [4]. In our CSEM application, each source has more
than one entry per column, and thus possibly more than one
active node, hence the definition of uyep.

Tree pruning, node intervals, and a suitable column
ordering exploit the sparsity of the application to reduce the
amount of computations in the solve phase. However, this is
done at the expense of reduced parallelism. Section 5 shows
how to still efficiently exploit parallelism in the solve phase,
even when dealing with sparse right-hand sides.

4 Exploiting sparsity during the backward
substitution

During the backward phase (L’X = Z), the nonzero
structure of Z results from the operations performed during
the forward substitution. It is preserved for Y since DZ =Y
and D is diagonal. When the matrix M is irreducible, which
is the case in the CSEM application, the elimination tree is
a real tree and not a forest. Theorem 1 then states that the

variables of Y belonging to the root node of the separator
tree will be nonzero, independently of the position of the
sources. The backward substitution processes the L matrix
in a backward way or, equivalently, into a top-down traversal
of the separator tree. As a result, all the nodes in the tree
are reached and need to be processed during the backward
phase. Since the tree is unique, this translates back into the
fact that Z is dense and that sparsity in the sources S does
not result in any reduction of the number of operations in
the backward phase.

However, the sparsity of the solution can result from the
properties of the physical problem, typically when only part
of the solution is valuable and needs to be computed. As
explained in Section 2.1 and illustrated in Fig. 1, boxing
and/or regular sampling can be used to select a subset of
valuable entries. How sparsity can be exploited during the
backward substitution is explained below.

Given a valuable entry xjx in the solution, the computa-
tions that contribute to updating xjx can be characterized,
similarly to the forward phase, by Theorem 1. Only nodes in
the path from the root node to node u (i) need be considered
to compute xijx. This property was proved in a more gen-
eral context in [26, Lemma 2.2]. In other words and from a
geometric perspective, if one assumes that i belongs to the
filled subdomain of Fig. 2a then the variables involved in
the computation of xjx will correspond to the colored sepa-
rators and part of the filled subdomain. As a consequence,
the process of tree pruning introduced in Section 3.1 can
be applied to the backward substitution. The exploitation
of horizontal sparsity also remains unchanged and the com-
putation of a suitable column ordering inside each block
follows the same rule, namely “columns with similar struc-
ture of valuable entries should be kept close in the column
ordering.”

First, sources close to each other have highly overlapping
boxes of valuable entries. Their representative nodes in the
separator tree are thus close to each other. Second, in the
case of regular sampling of the entries in the solution, we
have no locality property to preserve since all the space is
regularly covered by the solution. Thus, the representative
nodes of the sources can also be used for the boxes;
therefore, the column ordering chosen during the forward
phase can be used during the backward phase.

The valuable entries in each column of X are thus
defined as a sampled set of variables in a box around the
corresponding source location. It should be noted that this
numerical sparsification of X is quite moderate compared
to the extreme sparsity of the sources S. Thus, X is a much
denser matrix with less geometrically localized nonzero
variables than S. As illustrated in Section 6, the impact of
exploiting sparsity will thus be smaller for the backward
step than for the forward step.

@ Springer

1248

Comput Geosci (2019) 23:1237-1258

5 Improving the parallel aspects of the solve
algorithms

In this section, we first explain the differences between
the factorization and the solve phases in terms of parallel
algorithms. We then show how the blocks of sparse RHS
can be defined and how the solve phase can be adapted to
improve the available parallelism.

5.1 Differences between the factorization
and the solve algorithms

The factorization and the solve algorithms have different
properties in terms of parallelism and load balancing.
Although in practice we apply a BLR factorization, we
consider in this section full-rank metrics because they are
the basis for the mapping and scheduling algorithms we
use [5]. We recall that, on the one hand, tree parallelism is
represented by the separator tree (two nodes from different
subtrees can be processed independently, as explained in
Section 2.4). On the other hand, large nodes of the separator
tree offer an additional potential for parallelism. This will be
referred to as node parallelism. Moreover, on a dense matrix
of order n, the complexity in terms of number of operations
of the factorization and solve phases, respectively O (n?)
and O(n?), is quite different. With nested dissection, the
size of the separators and thus the size of the frontal matrices

increases as we get closer to the top of the tree. Most of
the computation thus occurs near the top of the tree and
this is emphasized for the factorization (with respect to the
solve). This effect is illustrated in Fig. 8, which compares
the distribution of computations in the separator tree for
both phases. At a level where 50 % of the computation
is completed for the solve phase, only 20 % is completed
for the factorization. This indicates that the solve phase
has more potential to exploit tree parallelism than the
factorization phase.

Tree pruning limits the number of branches of the
separator tree that can be computed independently. Thus,
tree parallelism and tree pruning introduced to exploit RHS
sparsity are two conflicting objectives. A classical approach
to balance the workload between the processors during the
factorization is to use a proportional mapping [25]. The
algorithm starts from the root node and proceeds recursively
down the tree. At each node of the tree the current list of
processors is partitioned among its children according to
the load of each child subtree. This is referred to as strict
proportional mapping and illustrated in Fig. 9a. It can be
adapted or relaxed in order to allow for dynamic mapping
and scheduling decisions, or to reduce memory usage [5].
If the whole set S is considered, and if the set of sources
is separated by the top level separators, then the width of
the pruned tree T,(S) may be large enough to cover most
of the tree and almost fully benefit from tree parallelism.

Fig.8 Normalized operation
count of the solve and 1.0 T T H$ \ 1.0 T H\17\ T
factorization phases as a
function of the level in the 0sl v—v solve Y 1 o8l vV solve |
separator tree, with level) e—e fgct v ' o—e fact. v
(root) = 0. The nested dissection
ordering has been used 0.6 y b b
0% y
0.4} : - -
v
0.2h 19%... 47 | |
v :
y v E
00 I I I
16 14 12 10528 6 4 2 0 0
1
1.0 —T— T
)Y
v—v solve v v—v solve
0.8} { 0.8} Y[
e—e fact. y o—e fact. ¥

@ Springer

Comput Geosci (2019) 23:1237-1258

1249

Fig.9 Proportional mapping
and comparison of tree coverage
between three blocks of right-
hand sides based on the example
from Figs. 4 and 6. a Dense
RHS (all the tree is covered);

b set of two close sources;

c set of two distant sources

Up U2 U4 UsSUS UG UL UI2
(a) T with 4 pro-
CEeSSOors.

However, because of the memory constraints mentioned in
Section 2.3, the RHSs are processed by blocks of limited
size (BLK), potentially reducing the width and parallelism
of the pruned tree. In this context, it is important to define
these blocks to limit the loss of tree parallelism introduced
by the exploitation of RHS sparsity.

Furthermore, at each node of the separator tree, a
symmetric frontal matrix is partially factored. For frontal
matrices associated with large separators near the top of the
tree, the proportional mapping assigns several processors
and the workload of the factorization is divided between a
master and several workers. This is illustrated in Fig. 10
where ¢ is the size of the separator and r is the number of
rows to be updated. At each node, the first g variables are
factorized. The number of operations at each front can be
expressed as the sum of the operations performed on the
master W,‘f; (g) and on the workers Wuj: (g, r) as follows:

W/ (g, r) = Wiq)+ W] (q.r),)

Fig. 10 Mapping of the rows of

a front to balance the workload

of the factorization between

processors q

T Phok kok ok ok ok ok ok ok ok ok ok ok K

bk ok % % ok ok k kK ok ok kK Kk
bk ok & ok ok k kK k ok kK Kk ok ok kK R
bk ok & ok ok k kK Kk ok kK Kk k ok kK

* ok
* %,
*,

uis

(b) T,(S1) with (c) Tp(Sa) with
S1 = (S«1,S45). S2 = (S«1,S44).

where W,',’: (q) = %q3 corresponds to the cost to factor a

dense matrix of order ¢ and Wu]j (g,r) = qr(g +r + 1)
to the cost to update the trailing r rows of the front. As
shown in Fig. 10a, more rows must then be mapped onto the
processors that appear first in the front. Note that we also
want to adjust the relative sizes of ¢ and r to balance the
workload between the master and each worker by splitting
nodes of the separator tree [3, 7].

In CSEM applications, where the solve phase becomes
predominant, we need to drive our algorithms with metrics
related to the solve phase, as described in the following
subsection.

5.2 Improving algorithms for the solve phase

Because of memory constraints, the columns of S need be
processed by blocks of limited size BLK. In the scheme
presented in Section 2.3, the columns of S are processed
using the initial ordering and then only a subpart of the

O Master Q Master
@ Worker 1 q @ Worker 1

Worker 2 Worker 2

Worker 3 Norker 3

kK Kk Kk kK Kk ok ok K
kK K Kk ok ok ok kK ok ok ok ok K
kK ke ke ok ok ok ok kK Kk ok ok K
T KKk kK k ok Kk ok Kok ok Kk
kK ke ke ke ok ok ok ok ok ok ok ok ok K
kK ke ke k ok kK Kk ok k kK
* kK Kk kK k ok kK Kk k ok K

(a) Front during

factoriza- (b) Front during solve (fac-

tion (triangular frontal ma- tors).

trix).

@ Springer

1250

Comput Geosci (2019) 23:1237-1258

domain is covered by the partial transmitter trajectory
within each block. Large subdomains, or subtrees, will be
pruned from the separator tree, limiting the number of
operations but also leading to a significant loss of tree
parallelism. Figure 9 a and c illustrates this property with
two sets S; and S, containing close and distant sources,
respectively.

To improve the tree coverage, one can select non-
contiguous columns from matrix S. They will better cover
the physical domain because the transmitter follows a
regular trajectory. Furthermore, to increase the efficiency
of BLAS kernels, each block of BLK columns consists
of a set of sub-blocks of constant size equally distributed
onto the transmitter trajectory. To do so, for a given sub-
block size whose size is related to the BLAS-3 performance
kernel, one can compute a constant gap to provide a good
trajectory coverage and thus a good separator tree coverage.
We then apply a postordering permutation within each block
to maximize the effect of horizontal sparsity.

Moreover, node parallelism has an important role in the
performance of the solve phase. As shown before, Fig. 10b
illustrates the distribution of data among processors when
the work is balanced for the factorization. At each step
of the solve phase (forward or backward substitution), two
operations are performed for each nonzero entry in the L
factor. The number of operations performed at each node
is expressed as the sum of the operations performed on the
master W,ﬂWd (g) and on the workers W};Wd (g, r as follows:

W™ (g, r) = w¥(g) + wi¥(q, r), 3)

where W,in(q) = ¢g(qg — 1) and W;Wd = 2rq. To balance
W;Wd among workers, data need to be mapped so that all
workers possess the same number of rows. For that, we also
switched off the dynamic schedulers from the factorization
that lead to irregular partitions with a dynamic choice of
the workers at each node. Instead, we use a strict static
proportional mapping of the processors in the tree. This
strategy will be referred to as S-ROWDISTRIB.

Furthermore, to balance the work between the master and
each worker, we aim at splitting nodes in the separator tree
so that W,;Wd(q) ~ W,}Z)Wd(q, ri), where r;, the number of
rows of each worker is equal to r divided by the number of
workers. This strategy is referred to as S-SPLIT.

In summary, the optimizations above aim at favoring
tree and node parallelism during the solve phase when

dealing with either sparse or dense RHSs. Concerning the
optimizations specific to sparse RHSs, we focused on the
forward substitution but they also apply to the backward
substitution, for the same geometrical reasons discussed in
Section 4, and with the same choice of blocks. In Section 6,
we also experiment with another optimization of the solve
phase regarding locality of data access and multithreading.
This was motivated by the need to process large blocks of
columns to improve tree coverage and tree parallelism.

6 Performance analysis in a parallel context

We analyze the impact of exploiting RHS sparsity and
using parallel solve-aware strategies on the performance of
the solve phase in a parallel environment. We also present
global resolution times showing that the relative weight of
the solve phase has significantly decreased compared to the
initial results from Table 1.

A perfect nested dissection ordering has been chosen
for all the following results, which were obtained using
the MUMPS solver [3, 5]. We note Tr, Ty, Ttwd, Troot, and
Towd and the times to perform the factorization, solve,
forward substitution, solve on the root node (through
ScalLAPACK [9]), and backward substitution, respectively.

6.1 Exploiting sparsity

We first study vertical and horizontal sparsity, and show
the impact of the choice of the columns and their order
on parallelism. In particular, we will demonstrate the
effect on tree parallelism of using non-contiguous columns
within each block. We consider the forward substitution in
Section 6.1.1 and the backward substitution in Section 6.1.2.

6.1.1 The forward substitution

We first report in Table 2 the performance in terms
of number of operations and time for solution of the
proposed algorithms (dense, vertical, horizontal sparsity,
and postordering of RHS columns) on the system H3
on 1024 contiguous columns of RHS. In the column
“dense,” the RHSs are still provided sparse, but sparsity
is ignored during the computations. The resulting number
of operations and runtime are thus similar to those one
would obtain with dense RHSs. As expected from theory

Table 2 Number of operations

(OPS x 1019) for the forward OPS Dense Vertical Horiz. Horiz. sparsity
elimination for 1024 (x10'0) sparsity sparsity and postorder
contiguous RHSs of system H3
Contiguous First 1024 (S1) 951 270 225 149
Last 1024 (S'1) 951 232 190 151

@ Springer

Comput Geosci (2019) 23:1237-1258 1251
Table 3 Times (seconds) for]]))
the forward elimination for Tiwa (8) Dense Vertical Horiz. Horiz. sparsity
1024 contiguous RHSs of sparsity sparsity and postorder
system H3, with 32 MPI and 1
thread per MPI Contiguous First 1024 (S1) 170 112 85 60

Last 1024 (81) 170 114 87 69

(a) Separators and set of
1024 contiguous sources (S1).

(c) Separators and set of 1024
non contiguous sources (S2).

Fig. 11 Geometrical and algebraic RHS distribution for two subsets of
1024 columns for system H3. a , ¢ Represent top views of the geomet-
rical domain for, respectively, 1024 contiguous RHS in natural order
and 1024 non-contiguous RHS sets of 16 columns with a gap of 109
columns permuted using a postordering. The color gradient indicates

(d) Tp(S2) with active columns.

the index of the column (source) in the (possibly reordered) set of RHS
columns. b, d The respectively corresponding top 6 layers of the sepa-
rator tree with, for each node, the number of active columns, as defined
in Section 3.2

Table 4 The same as Table 2,

but for non-contiguous RHSs OPS Dense Vertical Horiz. Horiz. sparsity
(x10'0) sparsity sparsity and postorder
Non-contiguous 16 cols, gap 109 (S2) 951 428 306 125
32 cols, gap 218 (8”2) 951 427 302 132
Table 5 The same as Table 3,
but for non-contiguous RHSs Ttwa (s) Dense Vertical Horiz. Horiz. sparsity
sparsity sparsity and postorder
Non-contiguous 16 cols, gap 109 (S2) 170 111 98 30
32 cols, gap 218 (S"2) 169 107 96 31

@ Springer

1252

Comput Geosci (2019) 23:1237-1258

Table 6 Number of operations

(OPS x 10'9) for the backward OPS Samp. Dense Vertical Horiz. Horiz. sparsity
substitution for 1024 (x10'%) sparsity sparsity and postorder
non-contiguous RHS
of system H3 16 cols, gap 109 20 951 876 702 636

(S2) 100 951 876 701 635

32 cols, gap 218 20 951 876 703 626

(S5) 100 951 876 702 625

Except for column “Dense,” only a subset of the solution is computed with coarse solution vector sampling

applied

(compare columns 3 and 4 of Table 2), using vertical
sparsity significantly reduces the number of operations with
respect to the dense case. Adding horizontal sparsity and
postordering the columns further reduces the number of
operations. However, as shown in Table 3, this operation
reduction is not fully converted into time reduction.

We illustrate with Fig. 11 the conflicting objectives
of vertical sparsity and performance and explain how to
address this issue. With the initial order of the columns in S,
the 1024 first ones (set Sp) are located at the low y part of
the horizontal plane containing the sources (see Fig. 11a).
They appear in the order described in Fig. 2a. From an
algebraic point of view, the effect of tree pruning (see
Fig. 11b) is that T, (Sy) is quite narrow (many branches have
no active columns). On the contrary, choosing 1024 non-
contiguous columns spreads the RHSs in the domain. This
is illustrated in Fig. 11c with the set S, consisting of subsets
of 16 columns in S separated by gaps of 109 columns. A
first consequence of such a distribution is a wider pruned
tree, with more nodes in 7, (S>) than in T}, (S;)—compare
Fig. 11b, d.

As a consequence, when only vertical sparsity is used,
one can expect a larger number of operations with S, than
with S; (compare columns “Vertical sparsity” of Tables 2
and 4). However, it is also interesting to observe that
horizontal sparsity combined with a postordering of the
RHS columns recovers this increase in the number of
operations (compare last columns of Tables 2 and 4). We
discuss/explain it in the following.

In Section 3.2, we explained that sources closely located
in the geometrical domain needed to be close in the
column ordering to reduce the operation count. The color
gradient from Fig. 11c illustrates the effect of postordering
the columns: sources that belong to the same subdomain
become close with respect to the column ordering. This
property explains why the efficiency of horizontal sparsity
is increased even more when a postordering of the columns
is applied. Indeed, for set S;, we have a 17 % reduction in
the number of operations with horizontal sparsity, reaching
45 % when postordering is applied. With non-contiguous
columns (set Sy), the operation reduction due to horizontal
sparsity and postordering reaches 71 % (see Table 4). Thus,
even in case of non-contiguous columns, the number of
operations is comparable (even slightly smaller) to the
case of contiguous columns (compare the last columns of
Tables 2 and 4). Non-contiguous columns also expose the
forward step to more parallelism. Thus, the time for the
forward step with contiguous columns (already divided by
a factor of three with respect to dense RHS processing—
compare the last and the third columns of Table 3) is further
divided by a factor of two (last column in Table 5).

6.1.2 The backward substitution

We analyze in Tables 6 and 7 the impact of computing
only a subset of the solution on the operation count and
on the execution time, respectively. In these tables, the
postorder used is identical to the one from the forward

Table 7 Estimated times

(seconds) for the backward Tpwa (s) Samp. Dense Vertical Horiz. Horiz. sparsity
substitution for 1024 sparsity sparsity and postorder
non-contiguous RHS of system
H3, with 32 MPI and 1 thread 16 cols, gap 109 20 169 160 141 127
per MPI (S2) 100 170 160 140 131

32 cols, gap 218 20 169 160 137 127

(S5) 100 170 160 141 127

Except for column “Dense,” only a subset of the solution is computed with coarse solution vector sampling

applied

@ Springer

Comput Geosci (2019) 23:1237-1258

1253

10 H3 - 1024 non-contiguous RHS with Postorder

¥—v Dense

&~—a Horizontal sparsity

e—e Horiz. sparsity with Postorder
~— Minimum

0.8}

0.6}

0.4}

0.2}

0.0 P \:\\\\\
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Fig. 12 Normalized accumulation of operations by levels in the
separator tree for the forward elimination with 1024 non-contiguous
RHS permuted in postorder (S2) for H3. Minimum corresponds to the
minimal number of operations, if all operations on zeros were avoided

substitution, avoiding any RHS permutation between the
forward and the backward phases. We only show results
with non-contiguous sets of columns since this enables, as in
the forward step, a better exploitation of tree parallelism. To
measure the time and the number of operations, we exploit
the fact that performing the backward substitution (L7 X =
7Z) while computing only a subset of the entries of the
solution X is equivalent in terms of operations, computation
kernels used, and parallelism, to performing the forward
substitution LY = X exploiting the sparsity of the right-
hand side X. All options to exploit sparsity developed for the
forward phase could then be used to analyze the potential of
exploiting sparsity during the backward step.

The density of the solution is such that one should
expect much smaller gains due to sparsity for the backward
substitution than for the forward substitution. Indeed, Fig. 1
b shows that the box around a source where the solution
needs to be found is quite large. Furthermore, to make the
forward phase most efficient, the RHSs have been combined
in blocks, as illustrated in Fig. 11c. The union of all boxes

associated with a given block of sources will cover an
even bigger part of the physical domain. This means that
the union of the nonzero structures of the corresponding
solutions will cover most of the domain. Hence, as shown
in Table 6, the ratio of operations between the dense and
the vertical strategies is close to one. We also observe that
the performance using coarse solution vector sampling is
not affected when the number of degrees of freedom on
which the solution is computed decreases from 1 over 20 to
1 over 100 (from sampling 20 to 100). Although the coarse
solution vector sampling can be useful to reduce the volume
of data corresponding to the solution, it indeed only affects
vertical and horizontal sparsity in the lowest levels of the
tree, which constitute only a minor part of the computation.
Overall, the exploitation of sparsity in the computed entries
of X brings an approximate 1.35x gain on the time for
the backward substitution. This gain is significant but is for
the moment based on running the forward substitution, so
that we decided not to include it in the global results of
Section 6.3.

6.2 Improvement through load balancing
and multithreading

Load balancing is necessary at several levels. In this section,
we first evaluate the impact of sparsity on tree parallelism,
and then show the importance of pushing forward node
parallelism through balanced workload between workers
and between the master and the workers. We mention that
sparsity is not exploited for the backward substitution in this
section and we report the actual times obtained for the dense
backward substitution.

In Fig. 12, we analyze the relation between tree
parallelism and exploitation of right-hand side sparsity
during the forward substitution. Note that for the dense RHS
case we have shown in Fig. 8§ that the solve phase offers
a greater potential for exploiting tree parallelism than the
factorization phase. We see in Fig. 12 that when reaching
the fifth level of the tree, 50 % of the computation is
performed with dense RHS. When exploiting horizontal
sparsity, only 23 % of the computation is performed

Table 8 Effect of different
mapping strategies on the time
for the factorization and solve
phases for H3, on EOS, with

1024 RHS (set S5), using 32
MPI processes and 1 thread per
MPI process

Mapping strategy Fact. time Forward sparsity Solve time
Ty T Ttwd + Troot + Towd

Standard MUMPS solver 203 No 346 170+ 9 + 167

Yes 206 30+9+167
With S-ROWDISTRIB 203 No 306 153 +9 + 144

Yes 174 24+9+ 144
With S-ROWDISTRIB and S-SPLIT 197 No 295 147+ 9+ 139

Yes 167 19+9+139

@ Springer

1254

Comput Geosci (2019) 23:1237-1258

Table 9 Effect of locality and

multithreading optimizations # Threads THREADOPT Ty T,
(THREADOPT) on T (seconds)
to process the RHS columns S» BLK =16 BLK =1024
of system H3
1 Off 197 272 167
On 197 271 136
10 Off 48 106 79
On 48 87 28

Ty is reported as a function of the block size BLK (standard or large) and of the number of threads (1 or 10)
per MPI process, for 32 MPI processes. Sparsity is exploited during the forward elimination phase only

at that level, decreasing to 7% when horizontal sparsity
is combined with a postordering of the columns. This
translates into an important loss of tree parallelism that
confirms the increasing relative weight of node parallelism.
Table 8 gathers results for the different strategies introduced
in Section 5.2.

We first observe that, thanks to the efficient use of
sparsity during the forward step, the solve phase is
dominated by the backward step. However, balancing the
workload between workers through equal distribution of
rows (S-ROWDISTRIB strategy in Table 8), and balancing
the workload between master and workers (S-SPLIT
strategy) significantly improves the performance of the
solve phase. The forward substitution time with sparse RHS
decreases from 30 s down to 19 s, showing a significantly
larger relative gain than the one obtained during the (dense)
backward substitution, from 167 down to 139 s. This is
coherent with the observation reported in Fig. 12 that node
parallelism is more critical when sparsity is exploited.

We now consider the performance of the solve phase
in an hybrid MPI-OpenMP environment, where multiple
threads are used within each MPI process. In general, sparse
direct solvers are used on a limited number of right-hand
sides, and processing several of them together (e.g., 16 or
32) leads to better arithmetic intensity and performance
thanks to the use of BLAS 3 operations at each node of
the separator tree, for which one can rely on multithreaded
BLAS libraries. However, CSEM applications have a much
larger number of sparse right-hand sides and larger blocks
of right-hand sides (ideally all of them if memory was not
an issue) are needed to cover the tree and benefit from
sufficient tree parallelism (see Section 6.1.1). In this context,
and especially in a multithreaded environment, efficient data
manipulations at each node of the tree and data locality
become critical to efficiently exploit the caches and the
memory bandwidth of the processors. We have thus worked
on improving locality and on multithreading memory-bound
operations in both the forward and backward solve phases:
arrange nested loops to match the storage of right-hand
sides and intermediate solutions, introduce new OpenMP

@ Springer

directives, improve data locality, and suppress intermediate
storage whenever possible.

Table 9 reports the impact of these improvements on
locality and multithreading (noted THREADOPT) on the
solve time for the system H3 with the 1024 non-contiguous
RHSs corresponding to the set S, used in Sections 6.1.1
and 6.1.2. The block size (BLK) defines the number of
right-hand sides treated in one shot. We see that with a block
size of 16, the improvement due to better data locality is
nonexistent with one thread and relatively limited with 10
threads. However, with a block size of 1024 (i.e., when all
RHSs of §; are processed in one shot), the impact of these
optimizations motivated by the CSEM sparse RHS context
become very large, as Ty decreases from 79 to 28 s.

We end the study with results on several test matrices that
combine all techniques introduced previously.

6.3 Global resolution times

We now summarize the new results obtained on the set
of systems presented in Table 1, and show that the work
described in this article has a large impact on the global
resolution times. We also relate the results to previous
work [27] which compared the direct approach with an
iterative one.

The experimental environment is the one described in
Section 2.3. Runs are performed on the EOS machine on
90 MPI x 10 threads, hence a total of 900 cores. The solve
phase is performed using a blocking parameter BLK equal
to 1024 columns for system H3, and to 512 for the larger
systems H17, S21, and DB30. Compared to Table 1, each
block now consists of non-contiguous columns in order to
encourage tree parallelism, and the columns within each
block are postordered. The blocks are thus defined in a way
similar to S, or S’ in Section 6.1.1, but they are shifted
in order to cover the entire RHS set. The root node of the
separator tree uses ScaLAPACK for both the factorization
and the solve phases (as in Table 1).

We report in Table 10 the detailed times for the solve
phase, as well as the time for the analysis and factorization

Comput Geosci (2019) 23:1237-1258

1255

Table 10 Time (seconds) of the analysis, factorization, and solve
phases on 90 MPI x 10 threads with and without the improvements
described in the study

Statistics with improvements

H3 H17 S21 DB30

T, 10 (3 %) 56 (3 %) 68 (2 %) 106 (7 %)

Ty 31(10%) 380 (21 %) 434 (14%) 510 (33 %)

T, 284 (87 %) 1402 (76 %) 2704 (84 %) 927 (60 %)
Trwa T3(Q22%) 289(16%) 75924 %) 184 (12 %)
Toot 14 (4 %) 190 (10 %) 326(10%) 80 (5 %)
Towa 197 (61%) 923(50%) 1619 (50 %) 663 (43 %)

Tow 325 1838 3206 1543

Statistics without improvements (see details in Table 1)

Tiotal 850 4567 8363 5117

Timings of the backward substitution do not include potential gains
reported in Section 6.1.2. The numbers in parenthesis indicate the
percentage of Tiotal

phases when the improvements described in this article are
applied. In Section 6.1.2, we have explained how sparsity
of the solution can be efficiently exploited during the
backward substitution. Based on an assumption of sparsity
of the solution motivated by the application, estimated gains
were computed. This on-going and promising work should
be further studied and validated in the context of a real
simulation and has thus not be included in the global gains
reported in this section.

Whereas the solve time represented between 83 and 95 %
of the complete resolution time in Table 1, its weight now
only represents between 60 and 87 % of the resolution
time. The solve time has indeed been divided by a factor
between 2.8 (for H3) and 4.6 (for DB30). We note that the
factorization times have slightly varied between Tables 1
and 10. Although not expected, the modified mapping
described in Section 5.1 also improves Ty. Overall, the
time for the entire resolution has been divided by a factor
between 2.6 (for S21) and 3.3 (for DB30).

Finally, we would like to compare the performance of
our improved direct solver with an iterative multigrid solver.
This iterative solver is a complex biconjugate-gradient-type
solver used in combination with a multigrid preconditioner
and a block Gauss-Seidel smoother, see [24] for more
details. It works on smaller parts of the domain depending
on the sources to be processed (see discussion below). The
tolerance threshold was set as |[MX — S||/||S|| < 107°.
An algebraic multigrid preconditioner was used and each
coarsening step was carried out by coarsening the previous
grid by a factor of 2 in each direction. There were 5
coarsening steps in total, while the system at the coarsest
grid was solved with a direct solver.

To compare the two solvers, we shall revisit results of
our previous work ([27] Table 5) where both solvers were
tested on the S21 matrix with two sets of sparse RHSs with
sizes 968 and 3784 (much smaller than the 12340 RHSs of
the experiments reported in Table 10). As in [27], the direct
solver job was executed on 900 cores of EOS computer,
while for an iterative solver each of 968 (or 3784) jobs was
sent to a single core, all runtimes were summed up and
divided by 900 (cores). The conclusion of the previous work
was that the iterative solver is always better because of the
slow solve phase of the direct solver that required around
one second per RHS. After the improvements described
in the present paper, the conclusions change dramatically.
As we see from Table 11, for the moderate number of
right-hand sides (< 1000), the two solvers show similar
performance. However, for several thousands of RHSs,
which is typical for Gauss-Newton iterations, the direct
solver demonstrates a superior speed.

It is worth noting that in a standard setup of the Gauss-
Newton inversion of CSEM data, the nonzero structure of
the system matrix M as well as the number and positions
of sources remain the same for all iterations. The total
number of iterations in one inversion is usually between
10 and 30. Some of the proposed procedures, e.g., RHS
reorderings, can therefore be reused for all iterations. On
the other hand, if one uses the same system matrix M for
all RHSs, some savings can be achieved also for iterative
solvers. In particular, it is possible to treat many RHSs
simultaneously as the closeness between RHS and parallel
implementation considerations may benefit the convergence
of block iterative methods [19, 21]. As a result, the scaling
between the runtime of iterative solvers and the RHS
number may be weaker than the linear scaling assumed
above. However, in practice, the system matrices for the
iterative solver are based only on a relatively small part of
the physical model centered around the source, i.e., they are
different for different sources. Therefore, achieving savings
here is not trivial, though one could consider taking into

Table 11 Extrapolation of the total resolution time (seconds) for S21
on 900 cores of the EOS machine

Number of RHSs BLR solver (egLr = 10*7) Iterative solver

To Ty Ty (*) Tow (**)
968 68 434 212 714 803
3784 68 434 829 1331 3141

Comparison of direct and iterative solvers. (*) T is extrapolated from
the measured value of 3206 seconds for 12340 RHSs, reported in
Table 10. (**) The iterative solver was executed on a single core and a
perfect speedup is assumed

Italicized entries emphasize the most important data in the table

@ Springer

1256

Comput Geosci (2019) 23:1237-1258

account the overlapping parts of the physical domain when
assembling the system matrices. Finally, in the case of BLR
factorizations, an approach with several different matrices
M depending on the considered parts of the physical domain
could also be envisaged. This would however reduce the
number of RHSs to be processed for each factorization,
and we expect less compression due to BLR because of the
smaller matrix sizes.

7 Concluding remarks

We have shown how known properties of 3D CSEM prob-
lems can be used to significantly improve performance of
direct solvers at the solve phase. The demonstrated improve-
ments are twofold: first, we reduced the computational load
through the exploitation of sparsity in RHS and solution;
second, we highlighted properties of the solve phase used to
drive parallel algorithms for modern parallel architectures.

On the one hand, thanks to the sparse structure of
EM sources, we have been able to limit the amount of
computations during the forward substitution of the solve
phase. For a system with 3 million unknowns and thousands
of RHSs, the resulting gains in the operation count for the
forward substitution is a factor of ~ 7.6x leading to a run-
time reduction by a factor of ~ 5.7x. These gains have
been achieved by exploiting both horizontal and vertical
sparsity and by reordering the columns of S. Furthermore,
we showed that it is also possible to reduce the time of the
backward step by exploiting the sparsity of the solution.
Indeed, in marine CSEM applications, the solution entries
belonging to the air, water, and distant parts of formation are
usually of little interest. The results should be applicable to
linear systems arising in other physical problems on finite-
difference or finite-element grids as long as the sources
are localized in space, thus leading to very sparse RHS.
We mention that the exploitation of RHS sparsity has been
further studied in [6], indicating that the operation count
may be further decreased. However, the performance of the
corresponding algorithms in a parallel context remains to be
analyzed and optimized and their application is out of the
scope of this article.

On the other hand, we redesigned parallelization
approaches to optimize the solve phase since it becomes the
most critical step for CSEM forward problem in the case of
very large number of RHSs. By using solve phase metrics to
better balance work and data in a parallel environment and
by improving multithreading settings for large numbers of
RHSs, we achieve an additional time reduction for both the
forward and backward substitutions.

In the end, the overall time reduction for the solve phase
is between a 2.8x and 4.6x factor for the tested CSEM

@ Springer

problems. This makes direct methods very competitive
against conventional iterative methods, especially for
problems with numerous RHSs occurring, e.g., in the
Gauss-Newton inversion.

It is also worth noting that combining the improvements
on the solve phase with the use of block low-rank (BLR)
approximation to speedup the factorization phase makes the
modern direct solver much more powerful in essentially
all respects that it used to be a few years back. Moreover,
since the solve phase often remains its most computationally
intensive part, an interesting direction for future work would
be to exploit the BLR format of the factors also during
the solve phase, as this further decreases the number of
operations during the solve phase and reduces the memory
footprint during factorization, which is especially critical
for large-scale problems. Although a first implementation
has been developed [22] to achieve these objectives, much
work is still needed to optimize its performance in a parallel
MPI-OpenMP environment.

Funding information This work was partially supported by the
MUMPS consortium and by LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

References

1. Amestoy, PR., Buttari, A., L’Excellent, J.Y., Mary, T.: On the
complexity of the block low-rank multifrontal factorization. SIAM
J. Sci. Comput. 39(4), A1710-A1740 (2017). https://doi.org/
10.1137/16M1077192

2. Amestoy, PR., Buttari, A., L’Excellent, J.Y., Mary, T.: Perfor-
mance and scalability of the block low-rank multifrontal factoriza-
tion on multicore architectures. ACM Trans. Math. Softw. 45(1),
2:1-2:26 (2019). https://doi.org/10.1145/3242094

3. Amestoy, PR., Duff, LS., Koster, J., L’Excellent, J.Y.: A
fully asynchronous multifrontal solver using distributed dynamic
scheduling. STAM J Matrix Anal Appl 23(1), 15-41 (2001)

4. Amestoy, PR., Duff, L.S., I’Excellent, J.Y., Rouet, F.H.: Parallel
computation of entries of Al. SIAM . Sci. Comput. 37(2),
C268-C284 (2015)

5. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.:
Hybrid scheduling for the parallel solution of linear systems.
Parallel Comput. 32(2), 136-156 (2006)

6. Amestoy, PR., L’Excellent, J.Y., Moreau, G.: On exploiting
sparsity of multiple right-hand sides in sparse direct solvers. SIAM
J. Sci. Comput. 41, A269-A291 (2019)

7. Amestoy, PR., L’Excellent, J.Y., Rouet, FH., Sid-Lakhdar,
W.M.: Modeling 1D distributed-memory dense kernels for an
asynchronous multifrontal sparse solver. In: High Performance
Computing for Computational Science, VECPAR 2014 - 11th
International Conference, Eugene, Oregon, USA, June 30 - July 3,
2014, Revised Selected Papers, pp. 156-169 (2014)

8. Avdeev, D.B.: Three-dimensional electromagnetic modelling and
inversion from theory to application. Surv. Geophys. 26(6), 767—
799 (2005). https://doi.org/10.1007/s10712-005-1836-x

https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1145/3242094
https://doi.org/10.1007/s10712-005-1836-x

Comput Geosci (2019) 23:1237-1258

1257

9.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

Blackford, L.S., Choi, J., Cleary, A., D’ Azevedo, E., Demmel, J.,
Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A.,
Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK users’ guide.
SIAM Press (1997)

Borner, R.U.: Numerical modelling in geo-electromagnetics:
advances and challenges. Surv. Geophys. 31(2), 225-245 (2010).
https://doi.org/10.1007/s10712-009-9087-x

Constable, S.: Ten years of marine CSEM for hydrocar-
bon exploration. Geophysics 75(5), 75A67-75A81 (2010).
https://doi.org/10.1190/1.3483451

Dongarra, J.J., Du Croz, J., Duff, I.S., Hammarling, S.: Algorithm
679: a set of level 3 basic linear algebra subprograms. ACM Trans.
Math. Softw. 16, 1-17 (1990)

Duff, 1.S., Erisman, A.M., Reid, J.K. Direct Methods for Sparse
Matrices, 2nd edn. Oxford University Press, London (2017)

Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse
symmetric linear systems. ACM Trans. Math. Softw. 9, 302-325
(1983)

Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M.C., MacGre-
gor, L.M., Constable, S.: Remote sensing of hydrocarbon layers
by seabed logging (SBL): results from a cruise offshore Angola.
Lead. Edge 21(10), 972-982 (2002). https://doi.org/10.1190/1.
1518433

George, J.A.: Nested dissection of a regular finite-element mesh.
SIAM J. Numer. Anal. 10(2), 345-363 (1973)

. Gilbert, J.R.: Predicting structure in sparse matrix computations.

SIAM J. Matrix Anal. Appl. 15, 62-79 (1994)

Gilbert, J.R., Liu, J.W.H.: Elimination structures for unsymmetric
sparse LU factors. SIAM J. Matrix Anal. Appl. 14, 334-352 (1993)
Hanssen, P., Nguyen, A.K., Fogelin, L.T.T., Jensen, H.R., Skaro,
M., Mittet, R., Rosenquist, M., Suilleabhain, L.O., van der Sman,
P.: The next generation offshore CSEM acquisition system, pp.
1194-1198. Society of Exploration Geophysicists. https://doi.org/
10.1190/segam2017-17725809.1 (2017)

Hiner, M., Martinez, Y., Sun, S.: Delineating salt bodies with
3D CSEM technology. In: Salt Challenges in Hydrocarbon
Exploration, SEG Annual Meeting Post-convention Workshop.
New Orleans (2015)

Lotstedt, P., Nilsson, M.: A minimal residual interpolation method
for linear equations with multiple right-hand sides. SIAM J. Sci.
Comput. 25(6), 21262144 (2004)

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Mary, T.: Block low-rank multifrontal solvers: complexity,
performance, and scalability. PhD thesis, Université de Toulouse
(2017)

Nguyen, A.K., Nordskag, J.I., Wiik, T., Bjorke, A.K., Boman, L.,
Pedersen, O.M., Ribaudo, J., Mittet, R.: Comparing large-scale 3D
Gauss-Newton and BFGS CSEM inversions, pp. 872-877. Society
of Exploration Geophysicists (2016). https://doi.org/10.1190/
segam2016-13858633.1

Plessix, R.E., Darnet, M., Mulder, W.A.: An approach for 3D
multisource, multifrequency CSEM modeling. Geophysics 72(5),
SM177-SM184 (2007)

Pothen, A., Sun, C.: A mapping algorithm for parallel sparse
Cholesky factorization. SIAM J. Sci. Comput. 14(5), 1253-1257
(1993)

Rouet, FH.: Memory and performance issues in parallel
multifrontal factorizations and triangular solutions with sparse
right-hand sides. PhD thesis, Institut National Polytechnique de
Toulouse (2012)

Shantsev, D., Jaysaval, P., de la Kethulle de Ryhove, S., Amestoy,
PR., Buttari, A., L’Excellent, J.Y., Mary, T.: Large-scale 3-D
EM modeling with a Block Low-Rank multifrontal direct solver.
Geophys. J. Int. 209(3), 1558-1571 (2017)

Slavova, Tz.: Parallel triangular solution in the out-of-core
multifrontal approach for solving large sparse linear systems.
Ph.D. dissertation, Institut National Polytechnique de Toulouse
(2009). Available as CERFACS Report TH/PA/09/59

Streich, R.: Controlled-source electromagnetic approaches for
hydrocarbon exploration and monitoring on land. Surv. Geophys.
37(1), 47-80 (2016). https://doi.org/10.1007/s10712-015-9336-0

Yee, K.: Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media. IEEE Trans.
Antennas Propag. 14(3), 302-307 (1966)

Zach, J., Bjorke, A., Storen, T., Maao, F.: 3D inversion of
marine CSEM data using a fast finite-difference time-domain
forward code and approximate Hessian-based optimization. In:
SEG Technical Program Expanded Abstracts 2008, pp. 614-618
(2008). https://doi.org/10.1190/1.3063726

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1007/s10712-009-9087-x
https://doi.org/10.1190/1.3483451
https://doi.org/10.1190/1.1518433
https://doi.org/10.1190/1.1518433
https://library.seg.org/doi/abs/10.1190/segam2017-17725809.1
https://library.seg.org/doi/abs/10.1190/segam2017-17725809.1
https://doi.org/10.1190/segam2016-13858633.1
https://doi.org/10.1190/segam2016-13858633.1
https://doi.org/10.1007/s10712-015-9336-0
https://library.seg.org/doi/abs/10.1190/1.3063726

1258 Comput Geosci (2019) 23:1237-1258

Affiliations

Patrick R. Amestoy!»? . Sébastien de la Kethulle de Ryhove>* . Jean-Yves L’Excellent®’ (2) . Gilles Moreau® - Daniil V. Shantsev®

Patrick R. Amestoy
Patrick. Amestoy @ mumps-tech.com

Sébastien de la Kethulle de Ryhove
delaketh@gmail.com

Gilles Moreau
Gilles.Moreau@ens-lyon.fr

Daniil V. Shantsev
dshantsev@emgs.com

1 University Toulouse, INPT, IRIT UMRS5505, Toulouse, France
Present address: Mumps Technologies, Lyon, France

3 EMGS, Trondheim, Norway

Present address: Kongsberg Defence & Aerospace, Asker, Norway

5 University Lyon, CNRS, ENS Lyon, Inria, UCBL, LIP UMR5668,
Lyon, France

6 EMGS, 1&I Technology Center, Oslo, Norway

@ Springer

http://orcid.org/0000-0001-5804-993X
mailto: Patrick.Amestoy@mumps-tech.com
mailto: delaketh@gmail.com
mailto: Gilles.Moreau@ens-lyon.fr
mailto: dshantsev@emgs.com

	Efficient use of sparsity by direct solvers applied to 3D controlled-source EM problems
	Abstract
	Introduction
	Background and motivations
	Finite-difference electromagnetic modeling
	Impact of the source structure
	Characteristics of the models and computing environment
	Solve phase algorithms

	Exploiting RHS sparsity during the forward substitution
	Vertical sparsity
	Horizontal sparsity and column ordering

	Exploiting sparsity during the backward substitution
	Improving the parallel aspects of the solve algorithms
	Differences between the factorization and the solve algorithms
	Improving algorithms for the solve phase

	Performance analysis in a parallel context
	Exploiting sparsity
	The forward substitution
	The backward substitution

	Improvement through load balancing and multithreading
	Global resolution times

	Concluding remarks
	Funding information
	References
	Publisher's note
	Affiliations

