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Prospectivity evaluation with 3D CSEM

Daniel Baltar1* and Neville D. Barker1 describe a method to update a prospect’s existing evalu-
ation with 3D Controlled Source Electromagnetic (CSEM) data.

E valuation of the prospectivity potential of hydrocar-
bon exploration ventures is a process of integration. 
Information provided by different technologies needs 
to be integrated into a single evaluation. This paper 

details a method for embedding the additional information 
provided by 3D Controlled Source Electromagnetic (CSEM) 
surveys into existing (or independently generated) prospect 
evaluations. Workflows are designed to leverage the primary 
value of the CSEM information in exploration (sensitivity 
to hydrocarbon volume), while minimizing the disruption 
and potential increase in risk associated with the adoption 
of a new technology. This is achieved through a focus on 
maintaining the independence of information sources and 
visibility of measurement uncertainties, along with adoption 
of standard performance-tracking methodologies.

Previously-described workflows for embedding CSEM 
information in a prospect evaluation process (e.g., Buland 
et al., 2011; Baltar and Roth, 2013) focus either on updates 
to the Probability of Success (PoS), or volume assessment. 
In contrast, we show that the nature of the information 
provided by CSEM is more suited to a coupled reassessment 
of both risk and volumes. This generates a more robust 
update not prone to the shortcomings associated with exist-
ing stand-alone approaches.

Workflows are illustrated with the use of realistic syn-
thetic examples; a published prediction using the methodol-
ogy is also reviewed in light of recent drilling results. When 
applied systematically across a CSEM-sensitive portfolio, 
the new information provided by 3D CSEM has the effect 
of polarising existing evaluations, making CSEM a valuable 
tool in exploration venture evaluation.

Assessment format
As an example, we consider existing volume assessments 
derived from six parameters, represented by probability dis-
tributions: area, net thickness, porosity, hydrocarbon satura-
tion, recovery factor and formation volume factor.

The updating of PoS with CSEM information is a process 
suited to the Bayesian approach, which indicates the change 
in a prior evaluation when new information is added (Buland 
et al., 2011). Given the volumetric component of CSEM 
detection, it is preferable that PoS is defined relative to the 
predicted volumes. Here, we consider PoS to be the prob-

ability of finding an amount of hydrocarbons between the 
P99 (1st percentile) and P01 (99th percentile) of the volume 
distribution. 

Schematically, we can represent this initial evaluation as in 
Figure 1.

CSEM-embedding workflows
Three related workflows are described:
1. The ‘EM Negative’ workflow is used to assess the range 

of the original volume distribution and PoS that is  
consistent with a negative CSEM survey outcome  
(the case where no resistive anomaly is identified to be 
associated with the prospect)

2. The ‘EM Positive’ workflow is used to assess the total 
range of the original volume distribution and PoS that 

Figure 1 Graphic representation of a prospect evaluation without the inclu-
sion of CSEM information. Blue region: brine outcomes (some with high resis-
tivity; some with low resistivity). Yellow region: hydrocarbon (HC) outcomes, 
ranging from small to large accumulations. The Minimum Economic Field Size 
(MEFS) and CSEM sensitivity threshold to hydrocarbon outcomes are simplified 
as dashed volume lines. From this arrangement, PoS corresponds to the area 
of the yellow region divided by the total area; the Probability of Economic 
Success, Pe = PoS * P(Recoverable volume > MEFS) is the area of the yellow 
region above the MEFS line, again relative to the total area.
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Figure  2 Graphic representation of the partitioning of the evaluation from 
Figure 1, after application of CSEM-embedding workflows. (a) An EM Positive 
or Negative result indicates our new solution space is either inside the green 
or red boxes respectively. The new PoS is the area with HC relative to the new 
solution space area; the new volume distribution corresponds to the hydrocar-
bon accumulation scenarios inside the corresponding solution space. (b) The 
new solution space constrained by one specific EM Positive outcome sits inside 
the green box. Within this box, the new PoS is the area with HC relative to the 
new solution space area, and the new volume distribution is the one created 
from the hydrocarbon accumulations inside the green box.

is consistent with a positive CSEM survey outcome (the 
case where a resistive anomaly is identified to be associ-
ated with the prospect).

For a schematic representation of these two workflows see 
Figure 2(a). Both of the above are tightly linked to the assess-
ment of CSEM data sensitivity. During survey planning, they 
can be used to assess the value of the CSEM information for 
the targeted prospect.
3. The ‘Constrained EM Positive’ workflow is used to assess 

the volume distribution, and corresponding PoS, that are 
compatible with a specific CSEM-identified resistor.

The resistor in workflow 3 is typically a subset of the total 
EM Positive range, as illustrated in Figure 2(b). This work-
flow, along with the EM Negative workflow in the case of 
non-detection, are therefore the preferred choice once results 
are available from the CSEM survey.

CSEM sensitivity
The ability of CSEM to detect a hydrocarbon accumulation 
depends not only on the presence of hydrocarbons in the 
reservoir, but also on the size of the accumulation, and the 
surrounding resistivity structure. More specifically, the domi-
nant parameters that determine the strength of the CSEM 
response are the Anomalous Transverse Resistance (ATR = 
ΔZΔR, Figure 3) and the area of the accumulation.

CSEM sensitivity can be assessed with appropriate syn-
thetic modelling, combined with an understanding of envi-
ronmental factors, and equipment and imaging performance 
characteristics (Mittet and Morten, 2012 and applied e.g. in 
Barker et al., 2012). For the purposes of evaluating a specific 
prospect, the key sensitivity assessment is a cross-plot of 
ATR and target area, as illustrated in Figure 4. Detectability 
is established using a sensitivity threshold, which divides the 
ATR and target area domain into detectable and undetect-
able regions. Factors not included in this assessment which 
affect the ability to reliably recover or interpret a target 
resistor include dataset quality, and background complex-
ity and uncertainty. In Figure  4, these can be thought of 
as affecting the level of sensitivity below which we would 
not expect a resistor to be reliably identified from the data. 
Performance tracking can be used to improve our estimates 
of this threshold level.

Updating volumetric assessments with 
information from 3D CSEM data
For volumetric updates, we broadly follow the approach 
detailed in Baltar and Roth, 2013, combining this with 
the more advanced CSEM sensitivity assessment detailed 
above. Given an existing probabilistic volume evaluation, 
only background and charged reservoir resistivity distri-
butions, along with CSEM-sensitive criteria, need to be 

added. A Monte Carlo simulation is carried out, where each 
realisation is classified as either detectable or undetectable 
by CSEM. In this way, two updated volume assessments are 
generated, corresponding either to the cases where we would 
expect an appropriate resistor to be identified in the CSEM 
data (EM Positive), or the cases where no such resistor could 
be identified (EM Negative).
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Evaluation of EM response probability in  
the absence of hydrocarbons
We can evaluate P(EMp|nHC) and P(EMn|nHC) togeth-
er, since they are complementary: P(EMn|nHC) + 
P(EMp|nHC) = 1. P(EMp|nHC) is the probability of obtain-
ing an EM positive outcome in the absence of hydrocarbons, 
an important interpretation pitfall to be considered when 
using resistivity data for hydrocarbon detection. Buland et 
al., 2011, from their experience estimate this probability to 
be 0.2 for a typical and realistic prospect; this case-specific 
probability will primarily depend on the geologic setting.

Typical sources of high resistivity in a sedimentary basin, 
aside from hydrocarbons, are low porosity rocks and fresh 
water; hence information on the age of the rocks, burial 
history, depositional environment, sediment provenance, 
availability of cements, and any other information that might 
help to understand the likelihood of low-porosity or fresh 
water lithologies, will help in assessing this probability. Since 
low-porosity lithologies are very often characterised by high 
impedances, seismic data and seismic velocities are a valuable 
piece of information in order to evaluate the probability of 
a false positive due to low porosities (Figure 5). Fresh water 
reservoirs, however, often exhibit no clear seismic signature; 
hence we will need to rely on other geological information 
to better characterise the probability of occurrence of this 
source of resistivity.

Evaluation of EM response probability in  
the presence of hydrocarbons
We can also evaluate P(EMp|HC) and P(EMn|HC) together 
as complementaries. The probability of imaging a resistor in 

With a specific EM Positive outcome, Baltar and Roth, 
2013 describe how the characteristics of the identified resis-
tor can be used to directly constrain the volume estimation, 
by the substitution of a new EM-derived net rock volume 
distribution (NRVem); we follow this approach in the 
Constrained EM Positive workflow.

Bayes’ theorem applied to EM
According to Bayes’ theorem, given an existing (prior) prob-
ability of finding hydrocarbons, P(HC) = PoS, and a certain 
CSEM outcome, EM, the new probability of finding hydro-
carbons, P(HC|EM), can be calculated by applying:

. (1)

In order to evaluate P(HC|EM), the likelihood ratio, R, of 
each of the two possible EM outcomes is needed. The R for 
EM Positive (Rp) and EM Negative (Rn) outcomes are:

 (2)

, (3)

where EMp is an EM positive case, EMn is an EM negative 
case, HC denotes the case where hydrocarbons exist in the 
reservoir, and nHC the case where no hydrocarbons exist.

Figure 3 CSEM sensitivity to thin resistive layers is, to a good approximation, 
a function of the Anomalous Transverse Resistance (ATR) within the resistive 
layer.

Figure  4 CSEM sensitivity assessment as a function of the potential ATR 
and area ranges for a specific prospect. The solid contour corresponds to a 
performance-tracked estimate of the threshold of sensitivity to the target (we 
would expect scenarios above and to the right of this contour to be identified 
from the CSEM survey; scenarios below and to the left would be below detec-
tion). Additional factors not considered directly in the sensitivity calculation 
serve to modify this threshold sensitivity level as appropriate (dashed contour 
line examples).
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1. Likelihood ratio estimates in EM Positive and Negative 
workflows depend upon the data sensitivity: high sensitiv-
ity to a scenario (whether positive or negative), increases 
the data’s R in that scenario, and vice versa.

2. Very precise NRVem estimates (narrow P10-P90 range 
relative to the prior) require correspondingly high confi-
dence in the information, or PoS to that outcome will be 
penalised.

3. Confidence in NRVem ranges, partially (or wholly) out-
side the prior’s range, is partially (or wholly) penalised as 
being inconsistent with the original evaluation. By reduc-
ing (zeroing) PoS in such cases, the interpreter is forced 
to re-evaluate prospect risk factors to this new volume 
range.

the CSEM data in the case where hydrocarbons are present 
depends on the sensitivity to the target, as detailed previously 
and in Figure  4. In practice, P(EMp|HC) and P(EMn|HC) 
are evaluated in different ways, depending on which of the 
volumetric workflows is followed.

For the EM Positive and EM Negative workflows, 
P(EMp|HC) can be calculated directly from the outcome of 
the Monte Carlo simulation described in Baltar and Roth, 
2013, and corresponds to the ratio of detectable volume 
cases to the total number of Monte Carlo iterations, N. 
P(EMn|HC) can be calculated as the ratio of non-detectable 
volume cases to N, or 1-P(EMp|HC).

For the Constrained EM Positive workflow, P(EMp|HC) 
no longer relates to the entire range of potential positive 
outcomes, but is specific to the positive survey outcome 
obtained. Its value, the proportion of the prior NRV that 
could produce a CSEM anomaly similar to the one actually 
measured, can be estimated from the overlap between the 
prior NRV and NRVem distributions:

P(EMp|HC) = Percentile of prior NRV at P01(NRVem) - 
Percentile of prior NRV at P99(NRVem).

For example, assume that the prior NRV P99 and P01 
values are 80 m.km2 and 9000 m.km2 respectively, and 
the corresponding NRVem values are 500 m.km2 and  
9000  m.km2, then it follows that there is approximately 
a 70% (P99 NRVem = P70 NRV, and P01 NRVem = P01 
NRV) chance of having an NRV that generates a resistive 
anomaly consistent with the 3D CSEM data (shown graphi-
cally in Figure 6).

Coupling of P(EMp|HC) to volumes in this way has three 
key benefits over stand-alone risk and volume assessments, 
which help to reduce the risk of inappropriate use of the new 
information:

Figure 5 Various geological scenarios as a function 
of their typical relative electrical and acoustic char-
acteristics. A joint analysis is a useful de-risker for 
the ‘false-positives’ possible from both resistivity 
DHI and seismic DHI in isolation.

Figure 6 A CSEM-derived NRV distribution (NRVem) compared to the originally 
assessed distribution. A cumulative log probability graph is used here to more 
clearly illustrate the evaluation of P(EMp|HC), being the proportion of the 
prior volumes included in the new CSEM assessment.
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changed probability of economic success due to the EM 
Negative outcome is then Pe = 0.17 * 0.20 = 0.03.

Constrained EM Positive scenario
Now consider that 3D CSEM results over the prospect indi-
cate a resistor where expected. Following the Constrained 
EM Positive workflow, we use the properties of the recovered 
resistor to directly constrain the NRV. An NRVem probabil-
ity distribution is obtained: the same as shown in Figure 6.

False positive risk was estimated to be 0.3 in the EM 
Negative example. A good correlation is now seen between 
seismic amplitudes that represent a low impedance, and the 
distribution of high resistivities. This allows for a reduction 
in the likelihood of a false positive, which we now estimate as 
P(EMp|nHC)=0.2.

P(EMp|HC) is calculated from the two NRV distributions. 
In this case, P99 of the NRVem distribution corresponds 
approximately to the P70 of the prior NRV, allowing us to 
estimate that approximately 70% of the prior NRV could 
produce a similar EM Positive response to the one measured 
in the CSEM inversion; hence, we estimate P(EMp|HC) = 0.7.

Using the updated values from the above discussion, and 
Equation 2, we can calculate an Rp for the constrained EM 
positive scenario and again apply Bayes’ theorem to calculate 
the updated PoS to be 0.6. By replacing the prior NRV with 
the NRVem, an updated recoverable volume distribution is 

Illustrative example
Consider a realistic frontier exploration scenario in 1500 m 
water depth, with a prospect at 3500 m below sea surface. The 
PoS has been estimated at 30%; the prospect’s volume estima-
tion parameters are listed in Table 1, leading to a volume distri-
bution curve of the blue line in Figure 7. Assuming a minimum 
economic field size (MEFS) of 100 MMbbl, the probability of 
economic success for this prospect, Pe = PoS * P(Recoverable 
volume > MEFS), will be: Pe = 0.3 * 0.65 = 0.2.

3D CSEM data acquisition is planned over a large area, 
including this prospect. We will now calculate how the prospect 
evaluation changes in terms of PoS, volumes, and Pe, depending 
on whether a resistor is seen or not seen in the CSEM data.

We assume that the background vertical resistivity is esti-
mated from the data as somewhere between 1 and 1.5 Ωm. 
Analog, depth, pressure, and temperature evaluations allow 
us to estimate the hydrocarbon-charged vertical reservoir 
resistivity to be somewhere between 25 Ωm and 125 Ωm (a 
broad range, which takes into account both the rock and 
fluid property uncertainties). Based on these properties, the 
CSEM target sensitivity is calculated to be as Figure 4, with 
the threshold sensitivity for detection estimated as 2 (the 
solid contour on Figure 4), once data quality and resistivity 
complexity are taken into account.

EM Negative scenario
In the case where the EM data show no resistive anomaly 
we can follow the EM Negative workflow. The geology is 
relatively benign in its electrical properties and we observe 
sub-horizontal bedding and little lateral variation in back-
ground structure over the survey area. False positives are 
therefore unlikely. However, we decide to remain conserva-
tive about the risk, given the frontier nature of the area. 
Hence we use a false positive risk, P(EMp|nHC), of 0.3, and 
thus P(EMn|nHC)=0.7. Now we evaluate P(EMn|HC) from 
the volumetric Monte Carlo simulation, where 100,000 
iterations yield 33,000 non-detectable cases (not illustrated), 
hence P(EMn|HC)=0.33. Using Equation 3 we compute Rn, 
and finally apply Bayes’ theorem from Equation 1 to calculate 
the updated probability of finding hydrocarbons to be 0.17.

The updated evaluation comprises the updated probabil-
ity of success and the updated volume estimation generated 
in the Monte Carlo simulation. Referring to Figure  7, the 

Figure  7 Recoverable volume assessments from the illustrative example 
detailed in the text. The minimum economic field size (MEFS) is shown by the 
solid vertical line.

P90 P10

Area (km2) 5 50

Net Thickness (m) 30 100

Porosity (fraction) 0.18 0.25

Hydrocarbon saturation (fraction) 0.5 0.7

Recovery factor (fraction) 0.2 0.4

Formation volume factor (fraction) 1.2 1.4
Table  1 Lognormally distributed volume param-
eters for the illustrative prospect example.
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the area inside the first flat spot will be used as P90 and the 
area inside the second flat spot will be used as P10, thus P90 
= 20 km², P10 = 60 km². For the thickness we use the same 
source of information, leading to P90 = 10 m, P10 = 35 m, 
and an NRV distribution as Table 3.

All other parameters (porosity, hydrocarbon saturation, 
recovery factor and formation volume factor) will be con-
sidered unaffected by the new CSEM information and will 
therefore be set aside for the rest of the example.

Fit of CSEM to prior
This CSEM case is a clear positive response, therefore the 
positive likelihood ratio, Rp, (comprising P(EMp|HC) and 
P(EMp|nHC)), needs to be assessed. P(EMp|HC) can be cal-
culated by the ratio between the prior NRV and NRVem. The 
calculation performed in Fanavoll et al. yields the NRVem 
probability distribution listed in Table 3. We graphically com-
pare the overlap between both NRV distributions in Figure 10. 
P01 of the NRVem corresponds approximately to P25 of the 
prior NRV. Therefore, we estimate P(EMp|HC) = 0.75.

calculated as Figure 7, and the new probability of economic 
success will be: Pe = 0.6 * 0.97 = 0.58.

Results discussion
The evaluations for each scenario are summarised in Table 2 
and graphically in Figure 8. The differences in the probability 
of economic success resulting from different 3D CSEM sur-
vey outcomes illustrate how powerful, and polarising, these 
data can be if used properly. The absence of a resistor implies 
lower chance of success and/or lower volume potential. In 
this example, the EM Negative result has led to a drastic 
drop in the probability of economic success, mainly as a 
result of the high minimum economic field size in combina-
tion with the reduction in the upside potential that the nega-
tive result implies. The presence of a resistor allows for the 
identification of high-potential features, in this case nearly 
tripling the chance of finding an economic accumulation.

Real-life Constrained EM Positive example: Pingvin
Fanavoll et al. (2014), used the NRV workflow from Baltar and 
Roth (2013), to generate a pre-drill net rock volume prediction 
from a CSEM anomaly associated with an existing prospect in 
the Barents Sea (Figure 9). The Pingvin prospect was located 
in production licence 713, approximately 65 km northwest of 
the 7220/8-1 Johan Castberg oil and gas discovery and 300 km 
northwest of Hammerfest. Subsequently, the operator, Statoil 
Petroleum AS, tested the prospect with wildcat well 7319/12-1 
and encountered gas in the reservoir interval, announcing drill-
ing results and preliminary volume estimates (NPD Drilling 
Announcement, 2014). We use this case to illustrate the practi-
cal application of the Constrained EM Positive workflow.

Prior evaluation
To consider the impact of CSEM in the evaluation of this 
prospect, and given that we do not have access to Statoil’s pre-
CSEM evaluation, we must first generate a reasonable prior.

In Fanavoll et al., we can observe two clear flat spots, 
naturally interpreted as GOC and OWC. Taking into account 
that prior to drilling this was a frontier setting and an 
unproven play, the probability of success must be low. On 
the other hand, the seismic indicators were good (flat spots 
and bright spots). We therefore conclude PoS would have 
been at the high end of the unproven play range, and use a 
value of 0.33. We assess the area from available information: 

Prior to EM data Updated analysis using EM data

EM Negative Constrained EM 
Positive

Probability of Success (PoS) 30 % 18 % 60 %

P(Recoverable Volume > MEFS) 65 % 21 % 97 %

Probability of Economic Success (Pe) 20 % 4 % 58 %
Table 2 Summary of prior- and post-CSEM risk evaluations for the illustrative example.

Figure 8 An illustration of the example evaluation updates described in the 
text. The minimum economic field size (MEFS) is shown by the solid vertical 
line. Coloured lines represent the volume range between P90 and P10. The 
different potential outcomes from the use of the CSEM information would 
help polarise this prospect’s evaluation.
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(e.g., Buland et al., 2012; Hesthammer et al., 2010). While they 
are a useful starting point for the application of the workflows 
described here, care should be taken when directly applying 
numbers obtained from one interpretation workflow to another.

Impact on a portfolio, and large-scale  
application of CSEM
While described here in terms of a single prospect, the great-
est value has been obtained from the 3D CSEM data when 
the information is available at the portfolio scale and early in 
the exploration process: the CSEM information can be used 
to identify new exploration leads in known plays, aid in the 
development of new play concepts, or upgrade untested con-
cepts (e.g., Escalera et al., 2013; Fanavoll et al., 2014). Within 
an existing CSEM-sensitive portfolio, the typical behaviours 
of individual prospects are summarised in Figure  11. These 
changes naturally lead to greater portfolio polarisation, and the 
potential for significant changes in exploration decision making.

Conclusions
Workflows have been presented for embedding CSEM infor-
mation into existing risk and volume assessments. The poten-
tial changes in the evaluation are significant, and in line with 
experience from recent application of this maturing technology.

While the adoption of a new technology inevitably comes 
at a cost (associated with the development and use of new 
evaluation tools, workflows and training of personnel, as 
well as the data cost itself), the workflows presented here 
have been designed to leverage the primary strengths of 
the CSEM measurement, while keeping to a minimum the 
disruption and potential increase in risk associated with the 
adoption process. This has been achieved through:
1. A focus on updating existing evaluations, rather than 

proposing more fundamental changes to evaluation com-
ponents;

2. The use of largely unconstrained 3D CSEM inversion 
results as input, rather than more complex joint imaging 

Now we estimate the false positive risk. The excellent 
fit between the area distribution of CSEM and seismic DHI 
places this case in the upper-left corner of Figure  5, leading 
us to conclude that P(EMp|nHC) is quite low. The limited 
number of similar cases (one example would be ‘Case A’ in 
Escalera et al., 2013) limits our ability to narrow-down this 
number in a statistically sound way, so we use Buland et al’s 
reference P(EMp|nHC) = 0.2, and reduce it to account for the 
fit to seismic DHI information, estimating P(EMp|nHC) as 0.1.

Computing Rp from Equation 2, and applying Bayes’ 
theorem in Equation 1 gives an updated probability of suc-
cess of 0.79.

These results are summarised in Table 4. It can be seen 
that, compared to the prior, the CSEM data, and its good 
fit to seismic DHI information, are pointing to a higher 
likelihood of finding hydrocarbons in the reservoir, but 
severely limiting the upper side of the NRV distribution. The 
announced discovery (NPD Drilling Announcement, 2014) 
comprised a gas column of ‘about 15 m’, and ‘Preliminary 
estimates place the size of the discovery at between 5-20 bil-
lion standard cubic metres of recoverable gas’. Using reason-
able estimates for the reservoir properties (area, saturation, 
recovery factor, and expansion factor), it can be shown that 
CSEM-predicted volume range is in line with the reported 
discovered volumes.

Performance tracking
As with other components of the evaluation process, prediction 
performance tracking is key to the balanced use of the CSEM 
information. Some statistical look-backs have been published 

Figure  9 (a) Pingvin prospect average resistiv-
ity map from CSEM inversion displayed with 
contoured reservoir thickness. Minimum (blue), 
medium (red), and maximum (black) scenarios 
based on seismic data are given by the three 
polygons. Reproduced from Fanavoll et al. (2014), 
Figure 7(b). (b) and (c): two competing interpreta-
tions of the double flat spot identified in seismic 
data. In scenario (b), the prospect is fully charged; 
the flat spots corresponding to gas-oil and oil-
water contacts. In scenario (c), the prospect is only 
charged to the uppermost flat spot. CSEM infor-
mation provides compelling evidence in support of 
scenario (c), as turned out to be the case.

P90 P50 P10

NRV (m.km²) 280 600 1300

NRVem (m.km²) 50 150 450
Table 3 A reasonable prior (before CSEM) NRV distribution for the Pingvin 
prospect, along with an NRVem distribution calculated directly from the CSEM 
results by Fanavoll et al. (2014).
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M. [2010] CSEM performance in light of well results. The Leading 

Edge, 29 (1), 258–264, DOI: 10.1190/1.3284051.

Mittet, R. and Morten, J.P. [2012] Detection and imaging sensitivity 

of the marine CSEM method. Geophysics, 77, E411-E425, DOI: 
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7220/8-1 Johan Castberg in the Barents Sea – 7319/12-1. http://

www.npd.no/en/news/Exploration-drilling-results/2014/731912-1/, 

date of access 20 January 2015.

products. This provides a more independent information 
source, from which in practice it is easier to estimate 
uncertainties and minimise interpreter bias;

3. Adoption of industry-standard performance tracking meth-
odologies. In the early stages of the adoption, the logical 
approach is to start with a conservative estimate for the R 
parameters, making larger evaluation updates as experience 
with, and confidence in, the information increases.

Within the same CSEM technology application, we see poten-
tial for future improvements in evaluation of the recovery fac-
tor (reservoir resistivity is linked to reservoir permeability), the 
fluid phase (lighter fluid phases tend to show higher saturation 
due to viscosity and pressure-related effects, therefore they 
should show higher resistivities), rock porosity, and hydrocar-
bon saturation. All of these refinements are more easily devel-
oped and applied once a core CSEM-embedding framework, 
such as the one presented in this paper, is in place.
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Figure 10 The CSEM-derived NRV distribution (NRVem) from Fanavoll et 
al., compared to a reasonable NRV prior estimate for the Pingvin prospect, 
Barents Sea.

Figure 11 A summary of the typical end-member outcomes seen after the 
addition of information from 3D CSEM to an existing prospect portfolio. (1) 
EM Negative. Reduction in expected volumes to below the level of EM sen-
sitivity, removing potential upside, and corresponding reduction in PoS. (2) 
Large Resistor. When consistent with prior, the large resistor increases both 
potential volumes and PoS, especially in the presence of other supporting 
evidence from seismic or absence of false positive potential. (3) Very Small 
Resistor. Again, consistent with the prior, the small resistor has increased the 
PoS, but removed the upside, potentially pushing the expected volumes to 
sub-commercial levels. (4) Unexpectedly Large Resistor. Increase in volumes, 
but potential decrease in PoS if volumes are largely incompatible with prior 
(increased risk of false positive). Increased potential may, or may not, out-
weigh increased risk.

Prior to EM 
data

Updated 
analysis using 

EM data: 
Constrained 
EM Positive

Probability of Success 
(PoS)

33 % 79 %

Table 4 Pingvin prospect: summary of realistic prior- and post-CSEM risk 
evaluations.


