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CSEM anomaly identification

Neville Barker1* and Daniel Baltar1 present a simple and clear criterion to qualify a feature as 
anomalous with respect to its surroundings.

I n a sedimentary basin, everything typically present is 
highly resistive, except brine. A localized region of higher 
resistivity, whether identified on well logs or from con-
trolled-source electromagnetic (CSEM) data, is therefore 

indicative of a local reduction in interconnected brine content. 
This may be due to the presence of fresh water, low-porosity 
lithologies (including salt, volcanics and some types of carbon-
ate), or hydrocarbons. It is this first-order sensitivity to fluid 
presence and properties that makes CSEM information of 
high potential value in an exploration environment (Baltar et 
al., 2015; Fanavoll et al., 2014; Zweidler et al., 2015).

In its simplest form, the use of CSEM for hydrocarbon 
detection can be considered a two-stage process. First, local-
ized regions of higher resistivity need to be identified from 
the CSEM data. Second, these ‘anomalous’ regions must be 
interpreted in terms of their potential for being indicative 
of hydrocarbon presence. One might reasonably expect that 
the greater challenge is the latter: successfully predicting 
the geological cause of an anomalous resistivity. However, 
in our experience, the initial task of reliably identifying the 
anomalous features can prove equally challenging without 
an appropriate process. Early CSEM interpretation work-
flows, focusing on measurement interpretation, tended to 
use a ‘threshold normalized amplitude response’ (NAR) rule 
such as 15% (Hesthammer, 2010). This proved useful in the 
most simple geologies, but of less value in more complex 
settings, and also failed to account for relative data quality. 
Today, the starting-point for CSEM interpretation is sub-
surface resistivity images. With these, there still exists plenty 

of leeway for the choice of colour scale to have a large effect 
on the apparent sizes of any ‘red blobs’ in the study area.

We detail here a simple and clear criterion to qualify a 
feature as anomalous with respect to its surroundings, which 
is analogous to that followed when qualifying the significance 
of seismic amplitude anomalies (Roden et al., 2014). We 
expand on an approach first proposed in Baltar and Roth, 
2013, as part of a quantitative interpretation workflow for 
CSEM, providing a more practical guide to its application and 
implications. The concept is first illustrated with well data, 
before the method is detailed with CSEM examples.

Anomaly detection in well resistivity logs
In well analysis, we typically rely on multiple log types for 
interpretation. However, to draw a more strict analogy to 
independent CSEM interpretation, it is important to con-
sider the analysis of well resistivity traces in isolation. In 
one-dimensional profiles of resistivity the simplest pay zones 
can be identified due to their outstandingly high resistivities, 
such as in Figure 1a. A histogram of this log (Figures 1b, 1c) 
shows a clear narrow ‘background’ range centered around 
2.35 Wm that can be visually or algorithmically fitted to a 
simple distribution. In this example, we have chosen to visu-
ally fit a normal distribution, which is plotted together with 
the histograms in Figures 1b and 1c. This distribution has 
a mean, m=2.35 Wm and a standard deviation, s=0.48 Wm. 
Given the properties of a normal distribution, this leads to 
a P90 of 1.74 Wm and a P10 of 2.96 Wm, as illustrated in 
Figure 1b.
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Figure 1 (a) a section of well log resistivity data, including a pay zone. (b) and (c), histograms of the same data, with a normal distribution (green) fitted to the 
‘background’. Background distribution P90, P10, mean (m) and standard deviations (#s) are also labeled on (b).
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With an interpretation for the background distribution, we 
now have the ability to assess the likelihood that any measure-
ment is a member of this distribution, and can therefore set a 
criterion for how far from the background the value needs to 
be in order to be qualified as anomalous with high confidence. 
Since in this case we are using a normal distribution, we can 
use the simple rule that values above 3.79 Ωm (3 sigmas above 
background mean) only have a 0.15% chance of belonging 
to the background distribution. We will revisit the choice of 
‘cutoff’ criterion below, in relation to CSEM data.

There are three key steps in this process:
1. �Identification of background resistivity.
2. �Fitting of background to a reasonable probability distribu-

tion.
3. �Moving far enough away from the background mean to 

have a high confidence that measurements no longer form 
a part of this distribution.

Quantitative criteria can be chosen to evaluate the goodness 
of fit for the distribution used, and the required distance (in 
terms of probability) from the background to something 
qualifying as anomalous.

The impact of resolution
For both well logs and CSEM, resistivity sensitivity is such 
that a measurement often allows for the detection of a resis-
tive layer, without the ability to fully resolve it (in the sense 
of constraining the boundary of the resistive body and accu-
rately assessing its resistivity and thickness – Worthington, 
2000). When the resolution of a well log is reduced, the 

measured contrast between layers is also reduced, making 
it more difficult to confidently identify resistivity contrasts 
(Figure 2). Our proposed identification method naturally 
accounts for this effect, by reducing the confidence in those 
anomalous features with a lower contrast to the background.

CSEM anomaly identification
The CSEM measurement typically has higher resolution lateral-
ly than vertically. 3D CSEM datasets therefore naturally favour 
interpretation in vertically averaged resistivity maps. Here, the 
areal extent of the resistive body can be thought of as playing 
the same role for CSEM as the thickness of the resistor in well 
log measurements. A sample of such data, from Barents Sea 
production licence 713, is shown in Figure 3a. These data have 
previously been discussed in Fanavoll et al. (2014) and Baltar et 
al. (2015), in relation to the Pingvin discovery, seen in the north 
of the image (an untested prospect at the time of data collec-
tion). Data have been averaged over a relatively large vertical 
window to encompass the shallow resistivity variations seen 
over the area. Laterally, data have been cropped at boundaries 
where there is a reasonable expectation of a change in geology, 
identified from interpretation in conjunction with seismic.

The histogram of the data (Figure 3b) shows a clear ‘back-
ground’ peak, followed by a potentially-anomalous tail, similar 
to those seen in the well log examples. We have visually fitted a 
normal distribution to the most common resistivities. Then, the 
resistivity cutoff needs to be defined. In our experience, a cutoff 
somewhere between 2 to 4 sigmas above the average back-
ground provides good results in a wide range of settings. Given 

Figure 2 Impact of resolution on a well resistivity 
log and associated histogram. The higher-resolu-
tion measurement ((a) and (b)) shows a large con-
trast between the background and high-resistivity 
outliers. When resolution is reduced ((c) and (d)), 
the background distribution remains qualitatively 
similar, but the contrast of the anomalous layers 
is reduced (seen as a reduction in peak heights in 
(c), and as a reduced ‘tail’ length in (d)). This, in 
turn, reduces the confidence in their presence and 
interpretability.
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is considered, a narrower range of resistivities is present. 
With a tighter color scale, a number of resistive ‘anomalies’ 
appear distributed across the region (Figure 3c). However, 
in the histogram we see that a normal distribution provides 
a good fit to most of the observed resistivity variation 
(Figure 3d). Using the same cutoff rules as above, we now 
transfer the P90 and P10 of the cutoff distribution on to the 
map view: several of the high-resistivity areas sit within the 
low-confidence contour, but only one area in the north-west 
is within the higher-confidence contour. While an interpreter 
may still decide to label some of these features as anomalous, 
there is a clear need to account for the greater chance that 
these are simply background resistivity variations.

there is some inherent uncertainty in where this cutoff should 
be placed, we choose to specify it as a normally distributed 
probability range, rather than a single value. We typically use a 
distribution width equal to the background distribution width, 
and a mean positioned 2.6s above the background mean. In 
terms of percentiles, this is equivalent to a cutoff P90 equal to 
the background P10. The P90 and P10 of the cutoff distribu-
tion can then be treated as anomaly confidence indicators, and 
shown as contours on the original map view.

Small surveys, and the absence of clear anomaly-qual-
ification criteria, often lead to ambiguous and uncertain 
interpretations. This effect can be illustrated with subsets 
of the above data. If only the southern portion of the data 

Figure 3 (a,c,e) vertically-averaged map-views of 
CSEM data. (b,d,f) corresponding resistivity histo-
grams, along with interpreted background and 
cutoff distributions. The P90 and P10 of the cutoff 
distributions provide the resistivity values for the 
anomaly confidence contours in the correspond-
ing map views.
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how this risk can be mitigated through acquisition of CSEM 
data over a larger area.
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Now consider a smaller region localized on the Pingvin 
discovery in the north (Figure 3e). This simulates a ‘single-
prospect-testing’ CSEM survey, with limited coverage outside 
the prospect extents. The histogram now shows a wide range 
of common resistivities (Figure 3f). It is difficult to confidently 
assign a normally distributed background, and therefore the 
cutoff distribution is equally poorly constrained. While this 
result has the potential to be anomalous, analysis is pointing 
to the greater interpretation risk. Alternative interpretations 
would include:
1. �Large variability in regional background resistivities.
2. �An imaging artefact due to reduced data fold at the edges 

of the small survey.
Even if this is a ‘true’ anomaly, uncertainty in its quantitative 
evaluation will be higher, reducing the value of the CSEM 
information.

Summary
We have presented a simple workflow which is designed 
to improve the objectivity of CSEM anomaly identification 
and confidence assessment. This workflow serves the same 
purpose as best-practice approaches for seismic amplitude 
anomaly interpretation. Results highlight the high interpreta-
tion risk associated with single-prospect-testing surveys, and 
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