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ABSTRACT

Frequency-domain methods, which are typically applied
to 3D magnetotelluric (MT) modeling, require solving a sys-
tem of linear equations for every frequency of interest. This
is memory and computationally intensive. We developed a
finite-difference time-domain algorithm to perform 3D MT
modeling in a marine environment in which Maxwell’s
equations are solved in a so-called fictitious-wave domain.
Boundary conditions are efficiently treated via convolutional
perfectly matched layers, for which we evaluated optimized
parameter values obtained by testing over a large number of
models. In comparison to the typically applied frequency-
domain methods, two advantages of the finite-difference
time-domain method are (1) that it is an explicit, low-
memory method that entirely avoids the solution of systems
of linear equations and (2) that it allows the computation of
the electromagnetic field unknowns at all frequencies of in-
terest in a single simulation. We derive a design criterion for
vertical node spacing in a nonuniform grid using dispersion
analysis as a starting point. Modeling results obtained using
our finite-difference time-domain algorithm are compared
with results obtained using an integral equation method.
The agreement was found to be very good. We also discuss
a real data inversion example in which MT modeling was
done with our algorithm.

INTRODUCTION

In geologic environments in which seismic imaging is challeng-
ing, e.g., below highly heterogeneous basalt layers or in the pres-
ence of complex salt structures with vertical boundaries or intrasalt
inclusions, magnetotelluric (MT) data can be a very useful comple-
ment to seismic data. In such situations, MT data can be used to

improve velocity models for further seismic processing or used
in workflows for joint inversion and/or joint interpretation. The re-
sistivity measurements provided by the MT method are then often
found to be a useful complement to the elastic properties seismic
data are sensitive to (Hovertsen et al., 1998; Key et al., 2006; Av-
deeva et al., 2012; Medina et al., 2012).
In the MT method, measurements of the fluctuations in the

earth’s natural electromagnetic fields at several locations are used
as a means to investigate the earth’s resistivity structure. This is
typically done by estimating frequency-dependent-impedance ten-
sors Z such that�

Ex

Ey

�
¼

�
Zxx Zxy

Zyx Zyy

��
Hx

Hy

�
(1)

from orthogonal measurements of horizontal electric (Ex; Ey) and
magnetic (Hx;Hy) fields at the measurement sites. The magnitudes
— usually converted to apparent resistivities — and phases of the
components of the impedance tensor are in turn used to characterize
the earth’s resistivity structure. Reviews of the MT method are given
by Orange (1989) and Vozoff (1991). The marine MT case, in which
the measurement sites are located on the seafloor, is discussed, for
example, by Constable et al. (1998), Hovertsen et al. (1998), and
Key (2003, 2012).
To obtain numerical solutions to the 3D MT forward problem,

one can use methods belonging to one of three main categories:
finite-difference methods, finite-element methods, and integral
equation methods. Algorithms based on these methods for solving
the MT forward problem that can be found in the literature (Wanna-
maker, 1991; Mackie et al., 1993; Smith, 1996; Newman and Alum-
baugh, 2000; Sasaki, 2001; Farquharson and Oldenburg, 2002;
Hursan and Zhdanov, 2002; Siripunvaraporn et al., 2002; Mitsuhata
and Uchida, 2004; Farquharson and Miensopust, 2011) typically
start from a frequency-domain formulation of Maxwell’s equations.
Discretizing the problem then leads, for each frequency of interest,
to a system of linear equations that must be solved to obtain the un-
known electromagnetic field values. Spectral techniques (Druskin
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and Knizhnerman, 1988, 1994; Carcione, 2006) are a promising al-
ternative that has been successfully applied to the solution of electro-
magnetic diffusion problems discretized with finite differences. They
allow time-domain modeling without explicit time stepping. The
spectral Lanczos decomposition method (Druskin and Knizhnerman,
1988, 1994) is a powerful method that also allows us to perform —
in addition to time-domain modeling — frequency-domain model-
ing for several frequencies in one run. A review of the finite-differ-
ence and finite-element methods for geoelectromagnetics is given by
Börner (2010).
In this paper, we present a method to obtain numerical solutions

to the 3D MT forward problem by using the finite-difference time-
domain (FDTD) method to solveMaxwell’s equations in a so-called
fictitious-wave domain. These equations are obtained by applying
the correspondence principle for wave and diffusion fields (de
Hoop, 1996) to Maxwell’s equation in the diffusive limit relevant
for MT exploration. The idea of solving diffusive electromagnetic
problems with the FDTD method by considering an associated
problem with a fictitious wavefield is first introduced by Lee et al.
(1989). The respective properties of the diffusive and fictitious-
wave domain fields are discussed in detail by Mittet (2010).
In comparison to the frequency-domain methods that are typi-

cally applied, two advantages of the FDTD method are immediately
obvious. First, the FDTD method is an explicit method with low
memory requirements in which the solution of systems of linear
equations is entirely avoided. Efficiently solving linear systems
of equations has been recognized as one of the main difficulties
in the application of frequency-domain methods (Avdeev, 2005).
Using iterative solvers (see, e.g., Sleijpen and Fokkema [1993], Ta-
ble 3.1) with a finite-difference frequency-domain solver leads to
memory requirements that are significantly higher than those of the
FDTD method. As an illustration, to solve an N × N system of lin-
ear equations, the frequency-domain method described by Weiss
and Constable (2006) in the context of controlled-source electro-
magnetic (CSEM) modeling leads to memory requirements of 10N
complex, double-precision words. In comparison, the memory re-
quirements for an FDTD method applied to a system with the same
number of nodes is of the order of 2N real, single-precision words.
A second advantage is that a single FDTD simulation allows com-
putation of the electromagnetic field unknowns at all frequencies of
interest, as opposed to frequency-domain methods that must usually
be run once for each frequency of interest. Noting that one is typ-
ically interested in computing MT responses for six to 10 frequen-
cies per decade (Simpson and Bahr, 2005), this can lead to
significant computational savings. From a parallel computing per-
spective, frequency-domain methods in which one linear system is
solved for each frequency of interest have the advantage of being
embarrassingly parallel. The FDTD method is sequential in nature.
It can be parallelized, although doing so efficiently requires some
care (Woods et al., 2010; Cessenat, 2013). The strength of the
FDTD method here is that MT modeling results for an entire survey
can be efficiently obtained with only two processors (one for each
polarization) and very little memory.
The transformation of Maxwell’s equations from the diffusive

domain to the fictitious-wave domain is performed because it allows
us to significantly reduce the number of FDTD time steps that is
required to obtain an accurate solution. Indeed, as pointed out by
Oristaglio and Hohmann (1984), the solution to Maxwell’s equa-
tions in the diffusive limit depends on events that take place at very

different time scales. Naive application of the FDTD scheme there-
fore leads to the use of a very small time step for a very long time, and
consequently, to a prohibitively large number of time steps. Max-
well’s equations in the diffusive limit are stiff. However, in the
fictitious-wave domain, it is a hyperbolic system of partial differential
equations that is solved, which allows the use of a comparatively
large time step (Mittet, 2010). Although diffusive electromagnetic
problems have been solved in this way since the late 1980s (Lee et al.,
1989), it is only more recently that the large possible gains in CPU
time became fully apparent (Maaø, 2007; Mittet, 2010).
We have developed an FDTD algorithm for MT modeling in a

marine environment. In this paper, we do the following: First, we
examine the mathematic transformation from the diffusive Maxwell
equations to Maxwell’s equations in the fictitious-wave domain. We
then provide a description of our FDTD marine MT modeling al-
gorithm. The focus here is on the treatment of boundary conditions
and that of nonuniform grids. A key element in our handling of
boundary conditions is the use of convolutional perfectly matched
layers (CPMLs) (Roden and Gedney, 2000). We subsequently
analyze the stability and dispersion properties of our modeling al-
gorithm, and we propose a design criterion for vertical node spacing
in nonuniform grids. MT responses computed with our algorithm
are thereafter compared with results obtained with an integral equa-
tion method. The agreement is found to be very good. Finally, we
discuss a real data inversion example in which our algorithm is used
to perform MT modeling.

THEORY

In this section, we discuss how the diffusive Maxwell equations
can be reformulated in an equivalent fictitious-wave domain. Ap-
plying Yee’s (1966) FDTD scheme to the equivalent fictitious-wave
domain problem rather than the original diffusive problem is advan-
tageous in terms of computational complexity as discussed in the
Introduction.
Mappings between the time and frequency domains will be ac-

complished via the Fourier transform:

FðωÞ ¼
Z

∞

−∞
fðtÞeiωtdt; (2)

and its inverse,

fðtÞ ¼ 1

2π

Z
∞

−∞
FðωÞe−iωtdω; (3)

with i ¼ ffiffiffiffiffiffi
−1

p
.

In the diffusive limit relevant for MT exploration, Maxwell’s
equations read

∇ × E ¼ −μ∂tH −K; (4)

∇ ×H ¼ σE þJ : (5)

Here, ∂t denotes partial differentiation with regard to time, E andH
are the electric and magnetic fields, J and K denote the electric
and magnetic current densities of external sources, σ is the electric
conductivity tensor, and μ is the magnetic permeability tensor.
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Henceforth, it will be assumed that σ is diagonal. Moreover, be-
cause the magnetic permeability of most rocks only differs little
from that of free space (Nabighian, 2006), we will assume that
the magnetic permeability tensor is diagonal with elements equal
to μ0 ¼ 4π × 10−7 H∕m.
The quantities E,H, J , and K are 3D vectors that are functions

of position x ¼ ðx; y; zÞ and time t. In general, the calligraphic font
is reserved for functions of time, e.g., Eðx; tÞ, Eyðx; tÞ, whereas a
different type of font, e.g., Eðx;ωÞ, Eyðx;ωÞ, is reserved for fre-

quency-domain quantities. Let GEjJðx; tj ~xÞ denote the diffusive
Green’s tensor function of rank two relating a point electric exci-
tation at position ~x and time t ¼ 0 to the resulting electric field at
position x and time t, and let GEjK , GHjJ , and GHjK be similarly
defined. All sources J ð ~x; tÞ and Kð ~x; tÞ are assumed to vanish
for t ≤ 0.
The electromagnetic wave-propagation problem in a lossless

medium is governed by equations analogous to equations 4 and
5 in the wave domain; i.e.,

∇ × E 0 ¼ −μ 0∂t 0H 0 −K 0; (6)

∇ ×H 0 ¼ ε 0∂t 0E 0 þJ 0: (7)

The primes are used to distinguish the quantities in equations 6 and
7 from those in equations 4 and 5. Here, let the permittivity tensor ε 0
be chosen such that

ε 0 ¼ σ
2ω0

; (8)

with σ being the conductivity tensor from equation 5 and ω0 ∈ Rþ

being an arbitrary angular frequency and let the permeability tensor
μ 0 ¼ μ. Moreover, let G 0E;HjJ;K denote the wavefield Green’s ten-
sors analogous to those from the diffusive case defined above.
Equations 6 and 7 will hereafter be said to be in the fictitious-wave
domain.
Let us now show how to compute, e.g., the quantity Exð ~x;ωÞ

from the diffusive problem of equations 4 and 5 resulting from a cur-
rent source J xð ~x; tÞ by using a fictitious-wave domain FDTD
scheme. The procedure is to apply Yee’s FDTD scheme to equations 6
and 7 in the presence of a fictitious-wave-domain source J 0

xð ~x; t 0Þ,
which allows us to obtain E 0

xðx; t 0Þ ¼ G 0EjJ
xx ðx; t 0j ~xÞ � J 0

xð ~x; t 0Þ. In
Appendix A, we derive expressions for the Green’s tensors from
the diffusive problem GE;HjJ;Kðx;ωj ~xÞ that we are ultimately inter-
ested in as a function of the fictitious-wave-domain Green’s tensors
G 0E;HjJ;Kðx; t 0j ~xÞ using the work of de Hoop (1996) as a starting
point. This establishes that using equations 6 and 7 as a starting point
to compute diffusive Green’s tensors keeps all the characteristics of
the physics governing equations 4 and 5. If the current source
J xð ~x; tÞ appearing in the system of equations 4 and 5 has a spectrum
such that

Jxð ~x;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2ω0

iω

r Z
∞

t 0¼0

J 0
xð ~x; t 0Þe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0dt 0; (9)

it can be shown, starting from the last equality in chain A-4 and fol-
lowing the same steps as in the proof of the convolution theorem for
Fourier transforms, that

Exðx;ωÞ ¼
Z

∞

t 0¼0

E 0
xðx; t 0Þe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0dt 0: (10)

In other words, the quantities Exðx;ωÞ and GEjJ
xx ðx; tj ~xÞ that we are

interested in can be obtained by numerically computing the integrals
in equations 9 and 10 on the fly as the fictitious-wave-domain FDTD
scheme is applied. A similar procedure can be used to compute all
components of the diffusive Green’s tensors GE;HjJ;Kðx;ωj ~xÞ. More-
over, relations such as equation 10 can be established for all other
electromagnetic fields of interest using the expressions from Appen-
dix A as a starting point.

FDTD IMPLEMENTATION

The main idea behind our algorithm is to apply Yee’s FDTD
scheme (Yee, 1966) to equations 6 and 7 and use relations such as
equation 10 to compute the physical fields. There are, however, some
challenges. The first is related to boundary conditions, and the second
to the use of nonuniform grids. We now discuss these challenges
in turn.

Boundary conditions

Grid termination and MT source implementation

Let us consider the use of an FDTD method based on Yee’s dis-
cretization of Maxwell’s equations on a rectangular parallelepiped
domain Ω ⊂ R3, with an associated grid ΩN consisting of a Car-
tesian product of 1D grids. To compute the required spatial finite
differences centered around a node located on one of the outermost
planes of ΩN , knowledge of field values for “ghost” nodes that do
not belong to ΩN is required (see Figure 1). Such knowledge is by
definition not available in the FDTD scheme and must be set inde-
pendently. Note that the different layers of ghost nodes in Figure 1
contain nodes of different types. This is because Yee’s FDTD scheme
leads to different node types on the different outermost planes ofΩN .
For example, the leftmost (rightmost) plane of ΩN contains nodes of
typesH 0

x, E 0
y, and E 0

z (E 0
x,H 0

y, andH 0
z). On the leftmost plane ofΩN ,

Figure 1. Original computational domain Ω (solid blue rectangle).
The arrows on top of the figure denote the plane-wave MT source.
The blue and green areas of Ω represent water and formation, re-
spectively. The gray zones denote regions with “ghost” nodes that
are not updated by the FDTD scheme, but to which specific field
values must be assigned at each time step to be able to carry out the
FDTD simulation. The node types that are present inside each gray
zone have been explicitly written.
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updating, e.g., an E 0
z node via Yee’s FDTD scheme requires knowl-

edge of ∂yH 0
x, which can be obtained without any trouble, and of

∂xH 0
y, for which knowledge of H 0

y on the leftmost layer of ghost
nodes is needed (Figure 1).
We assign to theH 0

x andH 0
y ghost nodes above the top boundary

of Ω a sum of two components: (1) a plane-wave MT source ex-
citation H 0

x;MT or H 0
y;MT and (2)H 0

x;air and H 0
y;air, resulting from the

air-water interface condition described below. After selecting an ap-
propriate source waveform Sðt 0Þ, for example, the first derivative of a
Gaussian pulse (Lee et al., 1989; Mittet, 2010), e.g., an x-polarized
MT source would be implemented by settingH 0

y;MTðx; t 0Þ ¼ Sðt 0Þ in
the top layer of ghost nodes.
We computeH 0

x;air andH
0
y;air as described by Wang and Hohmann

(1993). The essence of their approach is that, under the quasistatic
assumption ∇2H 0 ¼ 0 in free space, which allows one to derive val-
ues for H 0

x;air and H 0
y;air on the top layer of ghost nodes located at a

distance h above the air-water interface using values ofH 0
z on the air-

water interface. The reader is referred to Wang and Hohmann (1993)
and Mittet (2010) for further details regarding this procedure.
We assign values to the vertical layers of ghost nodes via the fol-

lowing requirement: All electromagnetic field normal derivatives
that need to be evaluated at the vertical boundaries of Ω should
be identically zero. This is illustrated on the left and right sides
of Figure 1 for the case of the x-direction. The intuition behind this
condition is that for a 1D layered earth and a plane-wave MT source,
the derivatives with regard to x and y of all quantities appearing in
equations 6 and 7 are identically zero. In this case, assigning the val-
ues of the vertical layers of ghost nodes as just explained does not
lead to any inaccuracies. Finally, the bottom E 0

x and E 0
y ghost nodes

are set to zero.

Convolutional perfectly matched layer absorbing boundary con-
ditions

Assigning values to the vertical and bottom layers of ghost nodes
as described above introduces two sources of error. First, electro-

magnetic propagation governed by equations 6 and 7 is lossless.
When the energy coming from the plane-wave MT source reaches
the bottom boundary of Ω, the electromagnetic fields will thus have
high amplitudes. Setting the values of the bottom E 0

x and E 0
y ghost

nodes to zero is then clearly not appropriate.
Second, if there are 2D or 3D inhomogeneities in Ω, some of

which may be in the vicinity of some of its vertical boundaries, the
x and y derivatives of quantities appearing in equations 6 and 7 will
cease to vanish at all times. Hence, assigning values to the vertical
layers of ghost nodes by requiring that derivatives with regard to x
and y vanish at all times will again lead to inaccuracies.
We address both of these issues by extending the vertical and

bottom boundaries ofΩwith CPML absorbing boundary conditions
(ABCs) (see Figure 2). CPMLs provide a very powerful implemen-
tation of reflectionless ABCs for FDTD schemes (Roden and Ged-
ney, 2000), to the extent that numerical reflections due to ABCs are
no longer considered a limiting factor in the performance of FDTD
schemes.
We now briefly review the CPML method on a uniform Yee grid.

Let us consider a CPML, which can be up to tens of cells thick, for
direction ξ extending from ξ ¼ 0 to ξ ¼ δξ, where δξ is the CPML
thickness in direction ξ and ξ is one of fx; y; zg. A complex stretch-
ing variable,

sξðu;ω 0Þ ¼ αξðuÞ þ
σξðuÞ

τξðuÞ − iω 0ϵ 0ξ
; (11)

is introduced for 0 ≤ u ≤ δξ. Here, ω 0 is used to denote the angular
frequency in accordance with previously introduced notation be-
cause it is equations 6 and 7 that define the time-marching scheme.
The scalar quantity ϵ 0ξ is related to the fictitious electric permittivity
tensor ε 0 from equation 8. The functions αξðuÞ ≥ 1, σξðuÞ ≥ 0, and
τξðuÞ ≥ 0 are real and must be designed appropriately for the result-
ing CPML to exhibit the desirable absorption properties. Our
choices for ϵ 0ξ and the functions αξðuÞ ≥ 1, σξðuÞ ≥ 0, and τξðuÞ ≥
0 are discussed further in Appendix B.
In the stretched coordinate space (Chew and Weedon, 1994), the

x-projection of the Fourier transform of equation 7 reads,

1

sy
∂yH 0

z −
1

sz
∂zH 0

y ¼ −iω 0ε 0xxE 0
x þ J 0

x; (12)

which, after performing an inverse Fourier transform, gives

ðs̄y � ∂yH 0
zÞ − ðs̄z � ∂zH 0

yÞ ¼ ε 0xx∂t 0E 0
x þ J 0

x; (13)

where � denotes convolution and s̄ξ is the inverse Fourier transform
of 1∕sξ. This corresponds to the x-projection of equation 7 in the
stretched coordinate space. Similar relations for the y- and z-pro-
jections of equation 7 and all three components of equation 6 can
be obtained in the same way. Updated equations for E 0

x, E 0
y, E 0

z, H 0
x,

H 0
y, and H 0

z can then be derived by replacing the spatial and tem-
poral derivatives by finite differences as done in Yee (1966) and by
using a recursive convolution technique for evaluating convolutions
such as those appearing in equation 13. Such derivations can be
found in, e.g., Roden and Gedney (2000) and Taflove and Hagness
(2005). These derivations can be generalized to take into account
nonuniform node spacing without much difficulty. As we discuss
below, our FDTD MT modeling algorithm allows for nonuniform

Figure 2. The original computational domain Ω (solid blue rectan-
gle, also depicted in Figure 1) and the computational domain Ω 0
(solid green rectangle) after the addition of vertical and bottom
CPMLs (brown areas) outside Ω. The gray zones denote regions
with ghost nodes that are not updated by the FDTD scheme and
correspond exactly to the gray zones from Figure 1. Note that
the CPML layers (1) have been introduced between the original
computational domain Ω, which remains unchanged, and the ghost
nodes and (2) are not to scale and in reality are thin compared to Ω.

E272 de la Kethulle de Ryhove and Mittet

D
ow

nl
oa

de
d 

11
/1

8/
14

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



node spacing either using the nonuniform grids from Monk and
Sülli (1994) or the coordinate transformation method described
by Fornberg (1988).
Let us now return to the two sources of error discussed above. Let

Ω 0 ⊂ R3 denote the computational domain obtained by extending
the vertical and bottom boundaries of Ω with CPML ABCs (see
Figure 2), and let Ω 0

N be the associated grid. We first note that as
long as the bottom CPML performs its absorption task well, all
downward propagating electromagnetic waves should be signifi-
cantly attenuated by the time they reach the lowermost plane of
Ω 0

N , meaning that no significant errors will be introduced if the val-
ues E 0

x and E 0
y of the bottom ghost nodes are set to zero.

Let us next turn our attention to the vertical layers of ghost nodes.
A crucial point is that for the case of a 1D layered earth, the intro-
duction of vertical CPML layers is fully compatible with the re-
quirement that all derivatives with regard to x and y vanish at all
times. This is the case as long as (1) the plane-wave MT source
is made to extend not only above Ω but also above the vertical
CPMLs as shown in Figure 2 and (2) the material properties inside
the vertical CPMLs are chosen in such a way that ε 0 is independent
of x and y, not just inside Ω but also inside the whole ofΩ 0. Indeed,
the derivatives with regard to x and y of all quantities appearing in
equations 6 and 7 are then identically zero over the whole of Ω 0,
which in turn implies that the quantities s̄x � ∂xG 0

η (with G 0
η one of

fE 0
y; E 0

z;H 0
y;H 0

zg) appearing in the x-direction CPMLs, and the cor-
responding quantities in the y-direction CPMLs, vanish at all times.
If in addition there are 2D or 3D inhomogeneities in Ω, possibly

even in the neighborhood of some of its vertical boundaries, then as
long as the vertical CPMLs perform their absorption tasks well, any
electromagnetic modes exhibiting x or y dependencies should be
significantly attenuated by the time they reach the vertical outer
boundaries of Ω 0. Hence, when computing spatial finite differences
on the vertical outermost planes of Ω 0

N , no significant errors will be
introduced if the vertical layers of ghost nodes are assigned values
using the previously described zero normal derivative conditions.
It is well known that the performance of CPML ABCs is worst

when energy propagates from the computational domain into a
CPML absorbing layer at close to grazing incidence (i.e., when
θi ≈ 90°). This issue is entirely avoided for the downgoing source
field by (1) designing the MT source and vertical CPML layers as
described above and (2) assigning values to the vertical layers of
ghost nodes as described above.
Note that, as the original diffusive problem has been transformed

to the fictitious-wave domain, the electromagnetic fields E 0 andH 0

have wavelike characteristics and their propagation is lossless.
Hence, extending Ω by adding stretched cells at the vertical and
bottom boundaries, as is often done when directly computing dif-
fusive fields E and H, which attenuate rapidly in space, is not ap-
propriate here. Indeed, because the fictitious-wave-domain fields
would not undergo any attenuation when propagating through
the stretched boundaries, we see, e.g., that once the energy from
the plane-wave MT source reaches the vicinity of the bottom layer
of ghost nodes, it would do so with high amplitude, which would
lead to inaccuracies as the values of the bottom E 0

x and E 0
y ghost

nodes are set to zero.

Nonuniform grids

Consider the grid design guidelines given in chapter 6 of Simp-
son and Bahr (2005) for finite-difference MT modeling. Whereas

the extent of the computational domain in each horizontal direction
is recommended to be at least six times the longest skin depth, the
node separation in the more sensitive areas of the computational
domain should not exceed a quarter of the shortest skin depth.
The skin depth δ at angular frequency ω in an isotropic medium
with conductivity σ and permeability μ is δ ¼ ðμωσ∕2Þ−1∕2. If
the node spacing in the x- and y-directions is kept constant and
one models four frequency decades, the number of nodes in each

horizontal direction then has to be at least 6∕0.25 ×
ffiffiffiffiffiffiffi
104

p
¼ 2400.

In addition, if the node spacing in the z-direction is also kept con-
stant and one discretizes the earth over a vertical distance that spans
three electromagnetic skin depths, this would lead to a 3DMTmod-
eling grid containing at least 2400 × 2400 × 1200 ≈ 6.9 × 109

nodes and, hence, to very high memory and computational require-
ments. Therefore, if one wishes to use one unique grid to produce
modeling results over the entire frequency range of interest while
keeping memory and complexity requirements reasonable, the
usual approach when using finite differences is to use nonuniform
orthogonal grids and allow the node separation to vary as a function
of position in the computational domain.
There are several ways in which we could allow for nonuniform

node spacing in our FDTDMTmodeling algorithm. One possibility
is to use the nonuniform grid presented by Monk and Sülli (1994).
For such a grid, even though at nodes close to grid irregularities the
finite-difference approximations are accurate only to the first order,
globally Yee’s scheme is second order convergent, a phenomenon
that is usually referred to as supraconvergence (Monk and Sülli,
1994). Another possibility is to use the coordinate transformation
method described by Fornberg (1988) with “real”-world mutually
orthogonal coordinate axes. An advantage of the latter method is the
ease with which high-order spatial differential operators can be in-
troduced. We implemented both alternatives. For ease of exposition,
the discussions in this section and the next are written with the non-
uniform grid from Monk and Sülli (1994) in mind. Specific matters
related to high-order differential operators and the coordinate trans-
formation method are discussed in Appendix C.

STABILITY, DISPERSION, MEMORY, AND
COMPUTATIONAL COMPLEXITY

In this section, we discuss the stability, dispersion, and the mem-
ory and computational complexity requirements associated with our
FDTD algorithm. A stability criterion valid for the nonuniform grid
from Monk and Sülli (1994) was derived for the case of isotropic
media by Edelvik et al. (2004), according to which the time step Δt 0
must satisfy

Δt 0 < min
k

1ffiffiffiffiffiffiffiffi
2ω0

μσk

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δx2k
þ 1

Δy2k
þ 1

Δz2k

s ; (14)

where index k runs over all the cells in the earth conductivity model,
Δxk, Δyk, and Δzk are the lengths of the electric field edges asso-
ciated with cell k, and σk is the conductivity of cell k. In case the
conductivity tensor corresponding to cell k is diagonal but aniso-
tropic, we conservatively set σk ¼ minfσk;xx;σk;yy;σk;zzg. Stability
for the case of the coordinate transformation method and high-order
spatial differential operators is discussed in Appendix C.
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The amount of numerical dispersion associated with our FDTD
algorithm for a real-world angular frequency ωa is discussed in Ap-
pendix D. The case considered there is that of an isotropic half-
space with conductivity σ ¼ 2ω0ε

0, an FDTD grid with uniform
spacing Δz, a time step Δt 0, and an x-polarized plane-wave source
excitation at z ¼ 0. If the dispersion error for a receiver measuring
Exðz;ωaÞ located at z ¼ z0 is to be bounded by γ > 0 in the sense of
equations D-10 and D-11, it is also shown in that Appendix D that
the spacing Δz in the interval z0 ≤ z ≤ z0 þmδðωaÞ should satisfy
requirement D-16, also stated here for convenience:

Δz <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γ

m
δ2ðωaÞ þ ðcσΔt 0Þ2

r
: (15)

Here, δðωaÞ is the skin depth at angular frequency ωa in the half-

space with conductivity σ, cσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0∕μσ

p
is the propagation veloc-

ity through this half-space, and m is a constant that can be set equal
to two (see Appendix D). In the derivation of condition 15, it is
assumed that a perfect electromagnetic reflector is embedded in
the half-space at depth z0 þmδðωaÞ; see Appendix D for details.
Clearly, as ωa decreases, δðωaÞ increases, the interval z0 ≤ z ≤ z0 þ
mδðωaÞ over which condition 15 must hold becomes larger, but so
does the maximum allowed vertical spacing Δz. Hence Δz can be
gradually increased as a function of depth. Condition 15 always
holds whenever

Δz <
ffiffiffiffiffi
6γ

m

r
δðωaÞ; (16)

which in general is not too much stricter a requirement because it
often is the case that ðcσΔt 0Þ2 ≪ 6γδ2ðωaÞ∕m. Also, because con-
dition 16 does not depend on cσ or Δt 0, it is easier to use than con-
dition 15. Conditions 15 and 16 can be very useful design criteria.
Note that condition 15 can also be used with finite-diffrence fre-
quency-domain modeling schemes simply by setting Δt 0 ¼ 0,
which actually leads to condition 16, as in such schemes there is
no temporal dispersion.
For a general 3D earth model σðx; y; zÞ, dispersion analysis is

more complex. One possibility to find appropriate vertical spacings
Δz as a function of depth is to compute σmax ¼ maxx;y;zσðx; y; zÞ
and σmin ¼ minx;y;zσðx; y; zÞ. In order for dispersion to be small
for a receiver measuring Exðz;ωaÞ located at z ¼ z0, condition 15
or 16 with σ ¼ σmax can then be made to hold in the interval
z0 ≤ z ≤ z0 þmδσmin

ðωaÞ. If one proceeds in this fashion, the re-
quirement from condition 15 or 16 is met over the appropriate in-
terval for the case of a half-space with conductivity σ ¼ σmin and the
case in which σ ¼ σmax.
Another possibility to evaluate how suitable the vertical node

spacing in a given nonuniform grid is for performing 3D MT mod-
eling is to compare analytical solutions for MT impedances in a 1D
layered earth obtained, e.g., using Wait’s recursion formula (Wait,
1954; Simpson and Bahr, 2005) to impedances produced by our
FDTD MT modeling scheme. When selecting 1D earth models to
perform this comparison, it is desirable to include high-resistivity con-
trasts to reflect downward propagating waves that have undergone
numerical dispersion back toward the receiver. If significant deviations
are observed the grid needs to be made finer in the z-direction.
In this discussion, we have focused mostly on issues related to

nonuniform node spacing in the vertical direction. MT modeling

results usually are less sensitive to horizontal variations in grid spac-
ing as noted by Madden and Mackie (1989). For the special case of
1D earth models, modeling results are completely independent of
the horizontal node spacing as the energy from a plane-wave MT
source then propagates purely vertically. If horizontal conductivity
contrasts are present, obliquely traveling waves will also appear and
affect the modeling results, which then also become a function of
the horizontal node spacing. In the latter case, consider a plane
electromagnetic wave of angular frequency ωa propagating from
a horizontal conductivity contrast to a receiver location. Starting from
such a wave, we can write conditions resembling equations D-10
and D-11 that should hold so as to not degrade the modeling results.
Such an analysis can then be used to find guidelines to select appro-
priate horizontal grid spacings. In practice, simple comparisons to
modeling results obtained with a fine horizontal grid spacing are
probably the easiest approach to find horizontal grid spacing require-
ments. It is also useful to remember, as pointed out by Madden and
Mackie (1989) and de Groot-Hedlin (2006), that one should be
particularly careful near regions with high horizontal conductivity
contrasts when selecting the horizontal node spacing.
We now briefly discuss the memory and computational complexity

of our FDTD scheme. The memory requirements are of six real
single-precision words for each standard FDTD cell. For each CPML
cell, an additional six real single-precision words are required. For
cells belonging to more than one CPML layer, the additional memory
requirements for each CPML layer should be added. For example, the
total memory requirement for a cell in a model corner belonging to all
three x-, y-, and z-direction CPMLs is then 24 real, single-precision
words. Let us now turn our attention to computational complexity. By
virtue of the presence of the negative exponential in the integrand of
equations such as equation 10, we see that to obtain an accurate es-
timate for the electromagnetic fields at an angular frequency
ω ¼ 2π∕T, it is sufficient to carry out the FDTD computations until
a fictitious time t 0max ≈ 4∕ ffiffiffiffiffiffiffiffiffi

ωω0
p ¼ ffiffiffiffi

T
p

× 4∕
ffiffiffiffiffiffiffiffiffiffiffi
2πω0

p
. The simulation

time is hence proportional to the square root of the longest period one
wishes to compute MT responses for. The required number of FDTD
time steps is Nt ¼ t 0max∕Δt 0, where Δt 0 should satisfy a stability cri-
terion such as that given in equation 14.

BENCHMARKING

In this section, we compare the results produced by our FDTD
MT modeling algorithm to results produced by integral equation
modeling software developed by the University of Utah Consortium
for Electromagnetic Modeling and Inversion (CEMI) (Hursan and
Zhdanov, 2002; Ueda and Zhdanov, 2006). For this, we use the
model depicted in Figure 3, which is a slightly modified version
of Dublin test model 1 (Miensopust et al., 2013). A 500-m water
layer with resistivity 0.25 Ωm was added to the latter model be-
cause we are interested in marine environments. As can be seen in
Figure 3, the model we use consists of three parallelepiped anoma-
lies with resistivities of, respectively, 1 Ωm, 10 Ωm, and 1000 Ωm
embedded in a homogeneous 100 Ωm half-space located under the
water layer. The 79 × 79 × 54.5‐km domain used for the FDTD
computations is shown by the black dashed lines in Figure 3.
The width in the x- and y-directions of the cells in the FDTD mod-
eling grid was kept uniform and equal to 500 m, whereas in the z-
direction, the cell thickness was of 100 m for 0 km < z ≤ 5.7 km; it
was gradually increased from 100 m to 1 km with a ratio of approx-
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imately 1.2 between adjacent cells for 5.7 km < z ≤ 10.5 km, and it
was kept uniform and equal to 1 km for 10.5 km < z ≤ 54.5 km.
The cell thicknesses in the z-direction will be discussed further
below. This gave a total of 158 × 158 × 113 cells excluding CPML
layers and of 178 × 178 × 123 ≈ 3.897 × 106 cells including 10-
cell-thick CPML layers.
Apparent resistivity ρij ¼ jZijj

μ0ω
and phase ϕij ¼ arg Zij values

produced by our FDTD algorithm, with nonuniform node spacing
in the z-direction implemented using the nonuniform grid from
Monk and Sülli (1994), are compared to results from integral equa-
tion modeling software developed by CEMI in Figures 4 and 5.
Figure 4 shows plots as a function of the period T for the receiver
marked with a yellow circle in Figure 3. Figure 5 is along the profile
marked with the blue line in Figure 3 for T ¼ 1000 s. Following
common practice, the phases ϕxy and ϕyx have been plotted in the
same quadrant for compactness. Note that our algorithm produced
accurate results for long periods (see Figures 4 and 5) in spite of the

limited vertical extent of the FDTD computational domain. For ex-
ample, for T ¼ 1000 s, the skin depth in the 100‐Ωm background is
approximately 159 km, which significantly exceeds the 54.5-km
vertical extent of the model. For this period, the mean deviations
between the apparent resistivity (ρxy and ρyx) and phase (ϕxy and
ϕyx) values computed by the FDTD and integral equation modeling
algorithms were 0.50% and 0.039°, respectively. The corresponding
values at T ≈ 31.6 s, where the skin depth in the 100‐Ωm back-
ground is approximately 28 km, were 0.29% and 0.045°, respec-
tively. Going from T ≈ 31.6 s to T ¼ 1000 s, there is hence an
extremely small degradation in the apparent resistivity fit, whereas
the phase fit, clearly also influenced by other factors and discussed
further below, actually improves very slightly. This shows that the
CPML ABCs performed very well. Note in addition that the FDTD
modeling results remain accurate even close to the edges of the
computational domain, as can be seen from Figure 4.
The deviation between the apparent resistivity (ρxy and ρyx) and

phase (ϕxy and ϕyx) values computed by the FDTD and integral
equation modeling algorithms always remained below 0.86%
and 0.15°, respectively, for all receivers and periods. The overall
agreement between the codes is hence very good. The largest phase
deviations were observed at periods T ≈ 20 s for receivers situated
at the same time (1) above the conductivity contrast between the
1‐Ωm anomaly and the 100‐Ωm background and (2) not directly
above the 10‐Ωm anomaly, e.g., the receiver marked with the yellow
circle in Figure 3. The skin depth at T ¼ 20 s in the 100‐Ωm back-
ground being of approximately 22 km, propagation inside the 1‐Ωm
anomaly located 20 km below the seabed will bear an influence,
albeit small as explained further below, on the computed MT
responses for these receivers. Interestingly, the requirement from
condition 15 for a half-space with conductivity σ ¼ 1 S∕m, a period

Figure 3. Model for comparing results produced by our FDTD al-
gorithm with results from integral equation modeling software, modi-
fied after Miensopust et al. (2013). The black dashed lines show the
limits of the FDTD computational domain. The water layer is 500-m
thick. The solid black and gray lines are a visual aid (except for the
500-m thick water layer, the drawing is to scale). The black circles
and triangles indicate receiver positions. The white circle and triangle
denote a receiver with coordinates ðx; y; zÞ ¼ ð0; 0; 500 mÞ. The
receiver examined in Figure 4 is depicted with a yellow circle,
whereas the profile examined in Figure 5 is marked with a blue line.
(a) Plan view and (b) vertical cross section at y ¼ 0.

Figure 4. Apparent resistivities ρxy and ρyx (top) and phases ϕxy
and ϕyx (bottom) produced by our FDTD algorithm (red crosses,
xy-mode; filled blue circles, yx-mode) and by integral equation soft-
ware (open green squares, xy-mode; open purple circles, yx-mode)
as a function of the period T for the receiver marked with a yellow
circle in Figure 3. The integral equation software was developed by
CEMI (Hursan and Zhdanov, 2002; Ueda and Zhdanov, 2006).
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T ¼ 20 s, γ ¼ 1%, m ¼ 2, and a choice for Δt 0 close to the bound
from equation 14 leads to the recommendation Δz ≲ 390m,
whereas in the region occupied by the 1‐Ωm anomaly, the vertical
cell spacing is of 1 km. For comparison, we run a new set of FDTD
computations in which the cell thickness in the z-direction was kept
uniform and equal to 100 m for 0 km < z ≤ 54.5 km, and all other
settings were kept unchanged. This led to a very slight improvement
in the agreement between the MT responses computed by the FDTD
and integral equation algorithms; e.g., the largest observed phase
deviations decreased by ∼0.012°. The improvement here is only
marginal because the influence of waves having propagated through
the 1‐Ωm anomaly on the final computed MT responses at T ≈ 20 s

is only small. To see this, consider a 1D earth model consisting of a
500-m water layer, a 100‐Ωm background, and a 1‐Ωm anomaly
with now infinite extent in the x- and y-directions. Before reaching
a receiver, the waves we are considering must (1) travel 20 km, i.e.,
almost one skin depth, through the 100‐Ωm background; (2) travel
5 km, i.e., more than two skin depths, through the 1‐Ωm anomaly;
(3) undergo reflection at the interface located at z ¼ 25.5 km, (4)
travel another 5 km upward through the 1‐Ωm anomaly; and finally,
(5) travel 20 km upward through the 100‐Ωm background. This il-
lustrates the use of design criterion 15: running the FDTD simula-
tions with Δz ¼ 100 m < 390 m rather than Δz ¼ 1 km > 390 m

in the region occupied by the 1‐Ωm anomaly led to an accuracy
improvement which, as expected in this specific case, is small.
The FDTD modeling results were produced using a computer

with dual Intel Xeon E5-2690 CPUs running at 2.9 GHz. We used
one processor per FDTD simulation. The runtime for the grid with
nonuniform spacing in the z-direction was of approximately 25 min
per source polarization. Assuming that one wishes to compute MT

responses for a total of 10 periods per decade between 1 and 1000 s,
this gives an equivalent runtime of approximately 25 min×60

3×10þ1
≈ 49 s

per period per source polarization. For this hardware and our spe-
cific implementation, we also observed that FDTD computations
for a CPML cell took on average 70%–80% longer than for a stan-
dard cell.

REAL DATA INVERSION EXAMPLE

The modeling scheme discussed above can be applied to the in-
version of MT data. We have implemented an iterative 3D scheme
based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) update method (Byrd et al., 1995). To perform a model
update at a given iteration, the L-BFGS software requires the misfit
and the gradient of the misfit functional with respect to conductivity
or resistivity. The calculation of the gradient as presented here is
closely related to that given by Newman and Alumbaugh (2000).

Gradient

Let the earth be divided into P cells, let each cell be assigned
horizontal and vertical conductivity values, and let m be a vector
of length 2P describing these values. The observed quantities are
the four components of the impedance tensor at all receiver loca-
tions xr and angular frequencies ω. We use the error functional

ψn ¼ ψn
data þ λRðmnÞ

¼
X

i;j;xr;ω

Wijðxr;ωÞΔZn�
ij ðxr;ωÞΔZn

ijðxr;ωÞ þ λRðmnÞ;

(17)

where i; j ∈ fx; yg, the superscript n denotes the iteration number, the
asterisk denotes complex conjugation, λ ∈ Rþ is the Tikhonov regu-
larization parameter, and RðmnÞ is a regularization term. In addition,

ΔZn
ijðxr;ωÞ ¼ Zobs

ij ðxr;ωÞ − Zn
ijðxr;ωÞ (18)

is the difference between the observed and predicted impedances at
iteration n, and

Wijðxr;ωÞ ¼
1

μ0ωŜ
2
ijðxr;ωÞ

(19)

is a weighting factor. Here, Ŝijðxr;ωÞ ¼ ηSijðxr;ωÞ, where
Sijðxr;ωÞ is the standard deviation of the observed data, which
can vary over several decades, and η is a multiplicative factor. The
factor η is chosen to be approximately the inverse of the average
of Sijðxr;ωÞ, and it does not depend on the receiver number or an-
gular frequency. It is a common factor for all data for a given MT

survey. Thus, Ŝijðxr;ωÞ is dimensionless and on average of order
unity. The weight function is proportional to inverse angular fre-
quency. The effect of this is that the kernels of the error functional

have the same frequency scaling as apparent resistivity ρij ¼ jZijj
μ0ω

.

The expression for the kernel of the misfit function can be viewed
as a misfit in apparent resistivity,

Δρnappðxr;ωÞ ≈
ΔZn�

ij ðxr;ωÞΔZn
ijðxr;ωÞ

μ0ω
: (20)

Figure 5. Apparent resistivities ρxy and ρyx (top) and phases ϕxy
and ϕyx (bottom) produced by our FDTD algorithm (red crosses:
xy-mode, filled blue circles: yx-mode) and by integral equation soft-
ware (open green squares: xy-mode, open purple circles: yx-mode)
at T ¼ 1000 s along the profile x ¼ 0 marked with the blue line in
Figure 3. The integral equation software was developed by CEMI
(Hursan and Zhdanov, 2002; Ueda and Zhdanov, 2006).
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The factor η does not influence the inversion and is introduced be-
cause it gives an intuitive understanding of the size of the misfit
for a given receiver at a given angular frequency. The regularization
term RðmÞ chosen in the example below favors horizontally smooth
conductivity models m by requiring that derivatives with regard to
x; y be small. The Tikhonov parameter λ is adaptively tuned to give
a ratio of model space error to data space error of approximately 15%
for early iterations and approximately 2% for iterations n > 100.
The data space gradients with regard to the horizontal and vertical

conductivities mhðxpÞ and mvðxpÞ of the earth model cell with
center xp (1 ≤ p ≤ P) are formally

gnðmtðxpÞÞ ¼
∂ψn

data

∂mtðxpÞ
¼ −

X
i;j;xr;ω

Wijðxr;ωÞΔZn
ij
�ðxr;ωÞ

×
∂Zn

ijðxr;ωÞ
∂mtðxpÞ

þ c:c:; (21)

where t ¼ h for horizontal conductivity, t ¼ v for vertical conduc-
tivity, the notation c.c. denotes the complex conjugate of the term
immediately preceding it, and the data error ψn

data is defined in equa-
tion 17. With k taking on the values x and y, using the Einstein
summation convention, the gradient for horizontal conductivity
reads

gnðmhðxpÞÞ ¼
X
ω

GEjJ
kq ðxp;ωjxsÞΓkqðxp;ωÞ þ c:c:; (22)

and that for vertical conductivity

gnðmvðxpÞÞ ¼
X
ω

GEjJ
zq ðxp;ωjxsÞΓzqðxp;ωÞ þ c:c:; (23)

where xs is the source location and the GEjJ
lq ðxp;ωjxsÞ for

l ∈ fx; y; zg are the diffusive Green’s tensors introduced earlier
in the theory section. The index q runs over the two horizontal po-
larizations of the MT source field. The gradients have the standard
form of a crosscorrelation between a direct field and an adjoint field.

The direct field is given by GEjJ
lq ðxp;ωjxsÞ and the adjoint field by

Γlqðxp;ωÞ. The latter can be expressed as

Γlqðxp;ωÞ ¼
X
xr

½GEjJ
lh ðxp;ωjxrÞΔJ�hqðxr;ωÞ

þGEjK
lh ðxp;ωjxrÞΔK�

hqðxr;ωÞ�: (24)

The electric dipoles ΔJ�hqðxr;ωÞ and the magnetic dipoles

ΔK�
hqðxr;ωÞ depend on the impedance misfits at the receiver loca-

tionsΔZn
ijðxr;ωÞ; see Appendix E. Hence, in the frequency domain,

two modeling operations per frequency, one for each source polari-
zation, are required to determine the direct fields. Likewise, two
modeling operations per frequency are required to determine the
adjoint state fields. All the receiver locations become simultaneous
source locations for the adjoint state calculation. Therefore, as an
example, if the impedance tensor is given for 20 frequencies, the
total number of modeling operations required to perform one iter-
ation is 80.

This is different with the above time-domain method. The direct
fields for all frequencies are determined by two modeling opera-
tions, one for each polarization. In principle, the adjoint state fields
for all frequencies could also be determined by two modeling op-
erations. However, as stated by de Hoop (1996), the transform from
fictitious time to frequency is stable and unique whereas that from
frequency to fictitious time is nonunique. The problem of generat-
ing proper fictitious time-domain sources from their frequency-
domain counterparts is discussed in Støren et al. (2008) and Mittet
(2010). Our practical experience with MT data is that groups of five
frequencies can be transformed simultaneously to fictitious time.
Computing the adjoint state fields therefore requires a total of eight
modeling operations. Adding the two direct state simulations, we
see that one iteration requires 10 modeling operations for the ficti-
tious time-domain method. This number can be compared to the 80
simulations required for a frequency-domain method.
It is clear from equation 11 of Mittet (2010) that electric and mag-

netic dipole sources must be treated slightly differently if they are to
appear simultaneously for the same simulations. The magnetic di-
pole source problem is as follows: ∀xr find K 0

hqðxr; t 0Þ such thatZ
∞

t 0¼0

K 0
hqðxr; t 0Þeiω

0t 0dt 0 ¼ ΔK�
hqðxr;ωÞ (25)

for five neighboring frequencies. That for electric dipoles is as fol-
lows: ∀xr find J 0

hqðxr; t 0Þ such that

Z
∞

t 0¼0

J 0
hqðxr; t 0Þeiω

0t 0dt 0 ¼
ffiffiffiffiffiffiffiffiffi
−iω
2ω0

s
ΔJ�hqðxr;ωÞ (26)

for five neighboring frequencies. Støren et al. (2008) and Mittet
(2010) discuss methods for the optimization of these types of time
functions. Expressions for ΔKhqðxr;ωÞ and ΔJhqðxr;ωÞ are given
in Appendix E.

Real data

We applied the inversion scheme to a data set acquired in the
western part of the Barents Sea in 2010. Marine CSEM and marine
MT data were recorded. In total, 80 receivers were deployed in 8
south–north lines with 10 receivers each. The line and site spacing
was 3 km. There were good MT data on 75 of the receivers. The
remaining receivers suffered from different problems and were not
included in the inversion.
The marine CSEM data were inverted first in a stand-alone in-

version. This gave clear indications of subsurface high resistivity
discussed further below. The MT data used in our inversions consist
of impedance tensors for 17 periods per receiver ranging from 1.45
to 375 s. We had data up to T ≈ 1000 s. However, because only
depths 0 km ≤ z ≤ 10 km were of interest to us, the longest periods
were excluded. Because the 3D MT inversion failed to converge
starting from homogeneous half-space models, we first run 2D
MT inversions for the eight south–north receiver lines. The software
that was used for this purpose is based on 2D versions of the mod-
eling and inversion schemes described in this paper. A 3D initial
resistivity model was then generated by smooth interpolation of
the 2D cross sections in the east–west direction. This 3D initial
model had a high-resistivity volume with depth range 3–6 km in
the central part of the receiver grid. Although the geometry of this
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volume was erroneous, as is evident from the high initial data-misfit
term (see Figures 6–9), this start model was still good enough to get the
3D MT inversion to converge. There were no indications of this high-
resistive volume reaching the seabed from the 2D MT inversions. The
north-east-depth dimensions of the 3D inversion resistivity grid were
82 × 62 × 20 km. Thewater depth in the area is 550mwith a fairly flat
seabed. The inversion domain was the whole model from the seabed
and down. The x- and y-axes, respectively, coincide with the north and
east directions, and the z-axis points down.
The total error as a function of iteration number is shown in Fig-

ure 6. In total, 196 iterations were performed. The total error is in
black, the data-space contribution is in green, and the model-space
contribution is in blue. The evolution of the total error as a function
of the iteration number shows a well-known behavior with good
progress at early iterations and slower progress at later iterations.
The later iterations are necessary to develop the finer details of the
resistivity model. It is clear from Figure 6 that the model-space con-
tribution to the error is small at later iterations and hence that very little
horizontal smoothing is enforced for the final resistivity model.
Figure 7 shows the data-space error as a function of receiver lo-

cation:

ψn
dataðxrÞ ¼

X
i;j;ω

Wijðxr;ωÞΔZn
ij
�ðxr;ωÞΔZn

ijðxr;ωÞ: (27)

This error is shown in map view for the initial and final resistivity
models. The left panel of the figure also shows the site numbering.
The initial data-space error is (1) clearly largest in the central section

of the receiver grid and (2) higher in the east and northeast than in
the west of the receiver grid. At the east and northeast of
the receiver grid, the stand-alone CSEM inversion indicated high
resistivity in the intermediate to shallow subsurface, which is a trend
that was also confirmed in another combined CSEM-MT survey
immediately to the north of the one that is discussed here. These
resistive layers are not believed to be salt, and the interpretation is
still open with respect to what sort of rock causes this high resistivity.
The data-space error is more evenly distributed for the final resistivity
model. Receiver number 68 (marked in Figure 7) has a higher misfit
than the others. Some of the neighboring receivers in the northeast
corner also have a final misfit that is above average. This is evident
from Figure 8: in particular for the longer periods, note the color in
the bottom panel for sites 63–65 and 71–75. This can be compared to
the lighter color, which also gives an idea of the average misfit, for
sites 1–47.
Figure 8 shows the data-space error

ψn
dataðxr;ωÞ ¼

X
i;j

Wijðxr;ωÞΔZn
ij
�ðxr;ωÞΔZn

ijðxr;ωÞ

(28)

as a function of the period T ¼ 2π∕ω for each receiver. For the ini-
tial model, we observe that the misfit is distributed over all periods
except for the shortest (T < 2 s). An inspection of the results for the
final iteration reveals that the inversion succeeded in reducing the
misfit over most of the frequency band. It is clear that the remaining
large misfits are for long periods. The background resistivity (i.e.,
that outside the high resistivity bodies) was approximately 1.2 Ωm
in the intermediate and deeper parts of the final model. This
amounts to a skin depth of approximately 10 km for the longest
period (T ¼ 375 s) used in this inversion. The inversion did not in-
crease resistivity above 1.2 Ωm below depths of 6 km even after
196 iterations. If we had observed such a trend, we would have re-
run the inversion using a model with a larger maximum depth. The
large remaining error on receiver 68 is also for the long periods. For
this receiver, we have a reasonable misfit for all impedance tensor
components except Zyx, for which the standard deviation is unusu-
ally large. We suspect there is a remaining noise problem related to
Zyx and that its standard deviation was underestimated although it is
large. A higher estimate for this quantity would have diminished the
contribution of Zyx to the inversion itself and the final misfit.
Figure 9 shows apparent resistivity and phase curves for receivers

24 and 33 (marked in Figure 7). The black lines are for Zxy, and the
green lines for Zyx. The contributions from the diagonal impedance
tensor components Zxx and Zyy are small. They are not displayed in
Figure 9 for the purpose of clarity but contribute to the misfits dis-
played in Figures 6–8. The observed data are displayed with error
bars. The predicted data from the initial and final models are, re-
spectively, displayed with dashed and solid lines. Receiver 33 is
the receiver with the highest misfit for the initial model. Receiver
24, immediately to the northwest of it, also has a large initial misfit.
In the inversion as a whole, it was observed that, for the final model,
the agreement between the predicted and observed apparent resis-
tivities ρxy and ρyx was typically better than for the phases ϕxy and
ϕyx. For the longer periods, ϕxy has a tendency to be on the lower
limit of the error bars. Moreover, the agreement between predicted
and observed data was best at short and medium period lengths.
However, the latter observation does not apply to the two shortest

Figure 6. Total (black line), data-space (green line), and model-
space (blue line) errors as a function of the iteration number.
The total error is the sum of data-space and model-space errors.
The data-space error is the sum of the data-space error kernel over
impedance tensor components, receiver locations, and frequencies.
The kernel of the misfit function can be viewed as a misfit in ap-
parent resistivity. The error is hence measured in Ωm.
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periods for which the data have large error bars.
These trends can be observed in Figure 9.
The central part of the resistivity model at the

final iteration is displayed in Figure 10. The
section of the model displayed here is roughly
limited by the outline of the receiver grid, and
it has north-east-depth dimensions of 32 × 32 ×
20 km. The object marked A was interpreted to
be a salt layer. It is roughly 1 km thick, and it is
positioned in depth from approximately 5 to
6 km, but it dips downward to the east to a maxi-
mum depth of 6.5 km. Its maximum extension in
the east–west direction is 13 km, while in the
south–north direction, it is 9 km. The central
body, interpreted to be salt and on which a diapir
can be seen, is marked B. Its maximum depth is
5.5 km, and it reaches the seabed. This salt body
was also identified in the stand-alone CSEM in-
version. However, the latter inversion failed to
properly delineate it or to identify its bottom
boundary. The shallow resistive object marked
C coincides with the shallow resistivity trend
identified from the CSEM inversion.
It took approximately 40 min per iteration to

run the inversion on a machine with 2.9 Ghz dual
Intel Xeon E5-2690 CPUs, 16 processors, and
256 GB memory. Two and eight processors, re-
spectively, were used in parallel during the com-
putation of the direct and adjoint fields.

Figure 8. Data-space error ψn
data as a function of receiver location xr and period T ¼

2π∕ω (see equation 28), for the start model (top) and the model after the final inversion
iteration (bottom). The kernel of the misfit function can be viewed as a misfit in apparent
resistivity. Hence, ψn

data is measured in Ωm.

Figure 7. Data-space error ψn
data as a function of receiver location xr (see equation 27). The kernel of the misfit function can be viewed as a

misfit in apparent resistivity. Hence, ψn
data is measured in Ωm.
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CONCLUSION

Applying the FDTD method in a fictitious-
wave domain can be an attractive alternative for
performing marineMTmodeling and for inverting
real-world marine MT data. Modeling results ob-
tained with this method have been shown to be in
good agreement with results produced by integral
equation modeling software, and the scheme has
been used to invert a 2010 data set from the
Barents Sea.
Although use of the FDTD method is not

widespread in marine MT modeling and inver-
sion software today, it has some clear benefits:
very low memory usage and the fact that electro-
magnetic field unknowns for all frequencies of
interest are obtained in a single FDTD simula-
tion. However, when using this method to com-
pute adjoint-state fields in order to obtain the
gradients required for inversion, the fact that
the transform from frequency to fictitious time
is nonunique causes difficulties. Our practical ex-
perience is then that electromagnetic field un-
knowns for only up to five frequencies can be
simultaneously obtained in a single FDTD
simulation.
We believe these advantages make the FDTD

method an attractive alternative to e.g. the more
widespread finite-difference frequency-domain
method. For example, given a machine with a
specific amount of memory, the FDTD method
will always be able to handle problems with sig-
nificantly more electromagnetic field unknowns
than its frequency-domain counterpart.
A design criterion for vertical node spacing

has been obtained based on dispersion analysis.
It shows that the vertical node spacing can
be gradually increased as a function of depth
for the case of a half-space. This may prove to
be a useful starting point to design grids for

Figure 10. Final resistivity model from our MT
inversion applied to real data from the western
Barents Sea. Object A is roughly 1 km thick and
was interpreted to be a salt layer. Object B is a salt
body with maximum depth of 5.5 km. Object C is
a shallow resistive object and agrees with the shal-
low resistivity trend identified in a separate CSEM
inversion. Below the 10-km investigation depth,
the resistivity remained below ∼1.2 Ωm and no
features of interest were identified. The color scale
was clipped below 1 Ωm because lower resistiv-
ities only appeared in the water layer.

Figure 9. Apparent resistivity and impedance phase. The black lines are for Zxy, and the
green lines are for Zyx. The observed data are displayed with error bars. The predicted
data from the initial and final models are displayed with dashed and solid lines, respec-
tively.
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finite-difference MT modeling. This criterion can also be used with
finite-difference frequency-domain schemes.
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APPENDIX A

DIFFUSIVE GREEN’S TENSORS

Expressions for GE;HjJ;K as a function of G 0E;HjJ;K have previ-
ously been established (de Hoop [1996], equation 24). The param-
eter α from de Hoop (1996) corresponds to our parameter ω0

from equation 8, with α ¼ 2ω0. To obtain a relation between
GE;HjJ;Kðx;ωj ~xÞ and G 0E;HjJ;Kðx; t 0j ~xÞ, it hence suffices to take a
Fourier transform. For example, for GEjK we have

GEjKðx;ωj ~xÞ ¼
Z

∞

t¼0

GEjKðx; tj ~xÞeiωtdt

¼
Z

∞

t¼0

�Z
∞

t 0¼0

G 0EjKðx; t 0j ~xÞ
ffiffiffiffiffiffi
ω0

2π

r
t 0e

−ω0 t
02

2t

t3∕2
dt 0

�
eiωtdt

¼
ffiffiffiffiffiffi
ω0

2π

r Z
∞

t 0¼0

G 0EjKðx; t 0j ~xÞ
�Z

∞

t¼0

eiωt
t 0e

−ω0 t
02

2t

t3∕2
dt

�
dt 0

¼
Z

∞

t 0¼0

G 0EjKðx; t 0j ~xÞe− ffiffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffiffi
ωω0

p
t 0dt 0: (A-1)

Here, the second equality in the chain follows directly from equa-
tion 24 in de Hoop (1996); the third equality follows by interchanging
the order of integration, which is legitimate because the integrand is
continuous over ðt; t 0Þ ∈ ð0;∞Þ × ð0;∞Þ; and the fourth equality
follows by applying formula 29.3.82 from Abramowitz and Stegun
(1972) with s ¼ −iω and k ¼ ffiffiffiffiffiffiffiffi

2ω0

p
t 0. We can formally show that

the integral

Z
∞

t¼0

eiωt
t 0e

−ω0 t
02

2t

t3∕2
dt (A-2)

converges, and hence that formula 29.3.82 from Abramowitz and
Stegun (1972) is valid for s ¼ −iω, by applying theorem 13.95 from
Titchmarsh (1939). The only requirement is that

Z
∞

t¼0

ð 1

t3∕2
e
−ω0t

02
2t Þ2dt < ∞; (A-3)

which is seen by first making the variable transformation t ¼ 1∕~t and
then using formula 2.322 from Gradshteyn and Ryzhik (2007) to
evaluate the integral.

Similarly, for GEjJ, we obtain

GEjJðx;ωj ~xÞ ¼
Z

∞

t¼0

GEjJðx; tj ~xÞeiωtdt

¼
Z

∞

t¼0

�Z
∞

t 0¼0

G 0EjJðx; t 0j ~xÞ −1
2ω0

∂
∂t 0

� ffiffiffiffiffiffi
ω0

2π

r
t 0e

−ω0 t
02

2t

t3∕2

�
dt 0

�
eiωtdt

¼ −1
2ω0

Z
∞

t 0¼0

G 0EjJðx; t 0j ~xÞ
�Z

∞

t¼0

∂
∂t 0

� ffiffiffiffiffiffi
ω0

2π

r
eiωt

t 0e
−ω0 t

02
2t

t3∕2

�
dt

�
dt 0

¼ −1
2ω0

Z
∞

t 0¼0

G 0EjJðx; t 0j ~xÞ
�
∂
∂t 0

Z
∞

t¼0

ffiffiffiffiffiffi
ω0

2π

r
eiωt

t 0e
−ω0 t

02
2t

t3∕2
dt

�
dt 0

¼
ffiffiffiffiffiffiffiffiffi
−iω
2ω0

s Z
∞

t 0¼0

G 0EjJðx; t 0j ~xÞe− ffiffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffiffi
ωω0

p
t 0dt 0; (A-4)

where the second equality in the chain again follows from equa-
tion 24 in de Hoop (1996); the third equality follows by inter-
changing the order of integration, which is legitimate because
the integrand is continuous over ðt; t 0Þ ∈ ð0;∞Þ × ð0;∞Þ; the ex-
change of the order of differentiation and integration in the fourth
equality follows by virtue of Lebesgue’s dominated convergence
theorem; and the last equality is obtained by evaluating the integral
over t with formula 29.3.82 from Abramowitz and Stegun (1972) as
in the case of GEjK discussed above.
Expressions forGHjJ andGHjK as a function of, respectively,G 0HjJ

and G 0HjK can be obtained using the same procedure. This gives

GHjJðx;ωj ~xÞ ¼
Z

∞

t 0¼0

G 0HjJðx; t 0j ~xÞe− ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0dt 0

(A-5)

and

GHjKðx;ωj ~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2ω0

iω

r Z
∞

t 0¼0

G 0HjKðx; t 0j ~xÞe− ffiffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffiffi
ωω0

p
t 0dt 0:

(A-6)

APPENDIX B

CPML VARIABLE PROFILES

In this section, we specify our choices for quantity ϵ 0ξ and the
functions αξðuÞ ≥ 1, σξðuÞ ≥ 0, and τξðuÞ ≥ 0, all of which influ-
ence the performance of the CPML ABCs we use in our FDTD MT
modeling scheme (see equation 11). Our choices are based on ideas
from Rickard and Georgieva (2003) and Taflove and Hagness
(2005). We set

σξðuÞ ¼ σmax;ξ

�
u
δξ

�
nþβ

; (B-1)

αξðuÞ ¼ 1þ γmax;ξ

�
u
δξ

�
n
; (B-2)

where δξ is the CPML thickness in direction ξ ∈ fx; y; zg; 0 ≤ u ≤
δξ is the depth in the CPML; n and β are such that n > 1 and
ðnþ βÞ > 1; γmax;ξ > 0 controls the rate of evanescent mode attenu-
ation; and σmax;ξ, controlling the rate of attenuation of propagating
waves, has the form
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σmax;ξ ¼ −
ðnþ β þ 1Þ · log R0

2δξ ·
ffiffiffiffiffiffiffiffiffi
ϵ 0ξμ0

q : (B-3)

Here, R0, the reflection coefficient at normal incidence, is to be de-
fined by the user, and ϵ 0ξ is a suitable average of ε 0. We choose

ϵ 0ξ ¼
1

2

�
jPηj−1

X
x∈Pη

ε 0ηηðxÞ þ jPνj−1
X
x∈Pν

ε 0ννðxÞ
�

(B-4)

with η and ν chosen such that ðξ; η; νÞ is a permutation of ðx; y; zÞ,
Pη ⊂ Ω 0

N the plane of E 0
η nodes immediately before the start of the

relevant CPML in direction ξ, and a similar definition for Pν.
We note that in the special case in which σξðuÞ ¼ τξðuÞ ¼ 0, we

have sξðu;ω 0Þ ¼ αξðuÞ, which corresponds to purely real coordi-
nate stretching. It is reasonable to conjecture that in the case of
a large cell size Δξ in direction ξ, less stretching in direction ξ
would be required to obtain good CPML absorption properties than
in the case of small Δξ. We hence set

γmax;ξ ¼
k
Δξ

; (B-5)

where k is a user-defined parameter.
Finally, our choice for τξðuÞ is

τξðuÞ ¼
τmax

ϵ 0ξ

�
1 −

u
δξ

�
; (B-6)

where ϵ 0ξ is defined in equation B-4, and τmax > 0 is a user-defined
parameter.
To summarize, we see the above CPML variable profiles depend

on the parameters S ¼ fn; β; R0; k; τmaxg: Our primary concern in an
MT modeling setting is that for a given choice of these parameters
and a given CPML thickness, the resulting absorption properties be
as good as possible for all frequencies and earth background conduc-
tivities σ ¼ 2ω0ε 0 one may wish to compute MT responses for.
We performed a search over approximately 3.5 × 105 different

sets S and found, for example, that 10-cell-thick CPMLs with
the parameter combination

S1 ¼ f2; 1.5; 10−6; 50; 10−3g (B-7)

had extremely good absorption properties and were suitable for MT
modeling.

APPENDIX C

HIGH-ORDER SPATIAL DIFFERENTIATION AND
COORDINATE TRANSFORMATION

Our FDTDMTmodeling scheme can be used in combination with
high-order spatial differential operators and the coordinate transfor-
mation method described by Fornberg (1988). We discuss this here.
The high-order spatial scheme is discussed in detail in Mittet

(2010). However, there are two points not covered there that are
relevant for this MT modeling scheme. The first issue is related
to the implementation of the direct downgoing MT source field with
the increased number of ghost nodes that follows from increased

operator lengths. The second is related to coordinate stretching
in combination with high-order difference operators.
As a consequence of longer spatial operators, we will have elec-

tric and magnetic ghost nodes above the air-water interface. Thus,
we will have to give source-field values to electric and magnetic
field components above the air-water interface. We use the follow-
ing reasoning: The low-frequency downgoing electric and magnetic
source fields in the air layer will vary slowly with depth due to the
high propagation velocity. Thus, for a plane downgoing wave at a
given time step, we set the magnetic field to the same value for all
levels above the air-water interface. The reflection coefficient for
the electric field at the air-water interface is very close to minus
unity. The resulting effect is a destructive interference in the air
layer immediately above the air-water interface. Thus, for the down-
going source-field, we set the values of the horizontal components
of the electric field to zero at the ghost nodes. Note also that the
transmission coefficient from air to water for a downgoing electric
field is zero; thus, we are not very sensitive to the actual value of the
electric field in the air layer. We enforce the previously described
zero-derivative condition for the fields at the vertical boundaries of
the grid.
Coordinate stretching can be formalized by the coordinate trans-

formation method described by Fornberg (1988). Fornberg dis-
cusses a method in which the grid for discretizing the real world
can be general, even with local curvature. He then describes the
transform that goes from this general grid to a regular grid with
fixed step lengths. The transformation method is valid for spatial
schemes of any order, pseudospectral schemes included.
The method is considerably simplified if the real world coordi-

nate axes are mutually orthogonal. In this case, each axis can be
treated separately. As an example, we discuss the z-axis here. As-
sume that the real-world depth is described by a stretched grid,
which will not be the simulation grid, on the z-axis. We introduce
a new depth coordinate η with a regular grid for use in the finite-
difference simulations. The relations between these two coordinates
are given by the transform functions TðzÞ and SðηÞ such that
ηðzÞ ¼ SðzÞ and zðηÞ ¼ TðηÞ. We introduce ∂ηTðηÞ ¼ τðηÞ−1 such
that, e.g., a z-derivative of the x-component of the electric field
E 0
xðx; y; z; t 0Þ takes the form

∂zE 0
xðx; y; z; t 0Þ ¼ τðηÞ∂ηE 0

xðx; y; η; t 0Þ: (C-1)

Care must be taken when the transform functions are defined. The
function TðηÞ must be such that τ is positive to have a stable finite-
difference scheme, and, as discussed previously, gradual stretching
as a function of depth is to be preferred to suppress numerical arti-
facts. The grid stretching on the z-axis can be interpreted on the regu-
lar η grid as a modification of the propagation velocity. If this effect is
properly treated, we note that the dispersion and stability analysis for
the scheme on the regular grid can be performed in the same way as
described by Mittet (2010) without any further assumptions.

APPENDIX D

NUMERICAL DISPERSION AND VERTICAL
SPACING REQUIREMENTS

Let us consider a 1D earth model consisting of an isotropic
half-space with conductivity σ ¼ 2ω0ε

0 in the region z ≥ 0. Let
us assume that Yee’s FDTD scheme in the fictitious-wave domain
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is used to compute electromagnetic fields. The boundary condition
E 0
xðz ¼ 0; t 0Þ ¼ fðt 0Þ, with fðt 0Þ ¼ 0 for t 0 < 0, is imposed on the

plane z ¼ 0. There is no other source of excitation to the system. In
this appendix, we first show how to evaluate the numerical disper-
sion associated with our fictitious-wave domain FDTD scheme in
such a scenario. This is done by showing that we can use analytic
continuation to extend well-known results for the case in which
ω 0 ∈ R to complex values of ω 0. We then use this result to deter-
mine requirements for the FDTD grid vertical spacing Δz as a func-
tion of depth in order for dispersion to be low.

Numerical dispersion

Because with the above assumptions none of the quantities ap-
pearing in equations 6 and 7 depend on the spatial coordinates x or
y, the functional dependence with regard to these variables is omit-
ted throughout this appendix. Moreover, because the system is
excited by a causal signal fðt 0Þ, all time-dependent quantities ap-
pearing in equations 6 and 7 are identically zero for t 0 < 0.
For any z > 0, let E 0

xðz; t 0Þ denote the x-oriented electric field that
would be computed by an ideal, dispersionless fictitious-wave do-
main FDTD algorithm. It can be calculated using an exact analytical
expression. Let E 0

x;FDTDðz; t 0Þ denote the corresponding quantity
computed by a fictitious-wave domain FDTD algorithm with
dispersion.
The Fourier transform of E 0

xðz; t 0Þ is defined for z ≥ 0 and ω 0 ∈
R as

E 0
xðz;ω 0Þ ¼

Z
∞

0

E 0
xðz; t 0Þeiω 0t 0dt 0: (D-1)

By virtue of Titchmarsh’s theorem (Titchmarsh [1948], theorem
95), one can use analytic continuation to extend the domain of
E 0
xðz;ω 0Þ from ω 0 ∈ R to all ω 0 ∈ C such that Imω 0 ≥ 0. This ana-

lytic continuation is unique and is given by (Titchmarsh [1948],
chapter 5)

E 0
xðz;ω 0Þ ¼

Z
∞

0

E 0
xðz; t 0Þeiνat 0e−νbt 0dt 0; (D-2)

with ω 0 ¼ νa þ iνb (νa ∈ R; νb ∈ Rþ). Note that setting νa ¼ νb ¼ffiffiffiffiffiffiffiffiffi
ωω0

p
in equation D-2 above allows us to recover the quantity

ExðωÞ defined in equation 10; i.e., E 0
xðz; ð1þ iÞ ffiffiffiffiffiffiffiffiffi

ωω0
p Þ ¼ Exðz;ωÞ.

Similarly, it is possible to define the Fourier transform
E 0
x;FDTDðz;ω 0Þ of E 0

x;FDTDðz; t 0Þ for z ≥ 0 and ω 0 ∈ R, and again
extend this definition to all ω 0 ∈ C such that Imω 0 ≥ 0 by analytic
continuation. As before, setting E 0

xðx; t 0Þ ¼ E 0
x;FDTDðz; t 0Þ in equa-

tion 10, we see that

E 0
x;FDTDðz; ð1þ iÞ ffiffiffiffiffiffiffiffiffi

ωω0

p Þ ¼ Ex;FDTDðz;ωÞ: (D-3)

Now, for any z > 0, let gðz;ω 0Þ be such that

E 0
x;FDTDðz;ω 0Þ ¼ gðz;ω 0ÞE 0

xðz;ω 0Þ (D-4)

for all ω 0 ∈ R. Let us assume that the domain of gðz;ω 0Þ can
be extended by analytic continuation from ω 0 ∈ R to all ω 0 ∈ D ⊆
C such that Imω 0 ≥ 0, with D being an open subset of C. (At the
end of this appendix, we characterize gðz;ω 0Þ and D more closely
for the special case of Yee’s FDTD scheme with uniform spacing

Δz in the z-direction applied to the 1D model and excitation de-
scribed above.) Hence, the function gðz;ω 0ÞE 0

xðz;ω 0Þ is analytic
for all ω 0 ∈ D such that Imω 0 ≥ 0, and because

lim
νb→0

gðz;ω 0ÞE 0
xðz;ω 0Þ ¼ E 0

x;FDTDðz;ω 0Þ; (D-5)

gðz;ω 0ÞE 0
xðz;ω 0Þ must also be equal, for all ω 0 ∈ D such that

Imω 0 ≥ 0, to the function E 0
x;FDTDðz;ω 0Þ already obtained above

by analytic continuation. This is because the analytic continuation
of the function E 0

x;FDTDðz;ω 0Þ from ω 0 ∈ R to all ω 0 ∈ C such that
Imω 0 ≥ 0 is unique. Finally, for anyω such that ð1þ iÞ ffiffiffiffiffiffiffiffiffi

ωω0
p ∈ D,

we see that using our fictitious-wave domain Yee FDTD scheme to
compute Ex;FDTDðz;ωÞ based on equation 10 leads to a dispersion
error

gðz; ð1þ iÞ ffiffiffiffiffiffiffiffiffi
ωω0

p Þ ¼ Ex;FDTDðz;ωÞ
Exðz;ωÞ

: (D-6)

Let us now examine gðz;ω 0Þ and D more closely for the special
case of Yee’s FDTD scheme with uniform spacing Δz in the z-di-
rection applied to the 1D model and excitation described at the be-
ginning of this appendix. For an angular frequency ω 0 ∈ R, the

exact wavenumber is kz ¼ ω 0 ffiffiffiffiffiffiffiffiffi
ε 0μ0

p
, whereas the corresponding

wavenumber ~kz obtained upon discretization using Yee’s FDTD
scheme with grid spacing Δz in the z-direction and time step
Δt 0 obeys the relation (Taflove and Hagness, 2005)

sinð ~kzΔz∕2Þ
Δz

¼ sinðω 0Δt 0∕2Þ
Δt 0

ffiffiffiffiffiffiffiffiffi
ε 0μ0

p
: (D-7)

Let

~kz ¼
2

Δz
arcsin ½Δz

ffiffiffiffiffiffiffiffiffi
ε 0μ0

p
Δt 0

× sinðω 0Δt 0∕2Þ�: (D-8)

After propagation over a distance z, we have for ω 0 ∈ R,

gðz;ω 0Þ ¼ E 0
x;FDTDðz;ω 0Þ
E 0
xðz;ω 0Þ ¼ eið ~kzðω 0Þ−kzðω 0ÞÞz: (D-9)

Now, the functions expðiω 0Þ, ω 0 ffiffiffiffiffiffiffiffiffi
ε 0μ0

p
, and sinðω 0Δt 0∕2Þ of the

real variable ω 0 can be extended by analytic continuation to the entire
complex plane. The principal value of the complex arcsin function is
analytic over the entire complex plane, except for the intervals
ð−∞;−1� and ½1;∞Þ, where it has branch cuts. The domain of

the function ~kzðω 0Þ defined in equation D-8, and as a consequence
also that of gðz;ω 0Þ, can hence be extended by analytic continuation
to the entire complex plane, except possibly for the intervals

ðð2nþ1Þπ
Δt 0 − i∞; ð2nþ1Þπ

Δt 0 − iνbo � and ðð2nþ1Þπ
Δt 0 þ iνbo ;

ð2nþ1Þπ
Δt 0 þ i∞�,

where there are branch cuts. Here, n ∈ f0; 1; 2; : : : g and νbo > 0

is a constant that depends on the values Δt 0, Δz, and
ffiffiffiffiffiffiffiffiffi
ε 0μ0

p
.

Vertical spacing requirements

Let us now consider a receiver located at z ¼ z0 measuring
Exðz;ωaÞ for real-world angular frequency ωa in a scenario with
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a perfect electromagnetic reflector at depth z ¼ z0 þmδðωaÞ
inside the half-space with conductivity σ. Here, δðωaÞ is the skin
depth at angular frequency ωa inside this half-space and m is a con-
stant discussed further below. Let the constant γ > 0 denote a
dispersion error level deemed acceptable for Exðz;ωaÞ, in the sense
that

1 − γ ≤
				g
�
z; ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffi

ωaω0

p �				 ≤ 1þ γ; (D-10)

				 arg g
�
z; ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffi

ωaω0

p �				 ≤ γ: (D-11)

The receiver located at z ¼ z0 will see a first arrival resulting from
the plane-wave excitation at z ¼ 0 directly propagating to z ¼ z0,
and a later arrival corresponding to an event in which the plane-
wave source penetrates m skin depths beyond z0, undergoes reflec-
tion at depth z ¼ z0 þmδðωaÞ, and then travels m skin depths back
to z ¼ z0. In order for the value of Exðz0;ωaÞ to depend not only on
the first arrival but also on the later arrival,m cannot be significantly
greater than two. It is hence reasonable to require that conditions D-
10 and D-11 hold for a propagation distance z of up to 2m ¼ 4 skin
depths δðωaÞ.
The expression for g from equation D-9 can be used to determine

requirements for the spacing Δz as a function of depth such that
conditions D-10 and D-11 hold for all z ≤ 2mδðωaÞwithout making
any approximations. However, the case in which jω 0Δt 0j ≪ 1 and
j ~kzðω 0ÞΔzj ≪ 1 for ω 0 ¼ ð1þ iÞ ffiffiffiffiffiffiffiffiffi

ωω0
p

in equation D-9 is of par-
ticular interest because the numerical dispersion will be small (e.g.,
γ < 1%). In this case, a simplification is possible by performing a
series expansion of the expression,

½ ~kzðω 0Þ − kzðω 0Þ�z ¼ kzðω 0Þz½ ~kzðω 0Þ∕kzðω 0Þ − 1�; (D-12)

which appears in equation D-9. This gives, keeping only the lowest
order terms in ω 0Δt 0 and ~kzðω 0ÞΔz,

~kzðω 0Þ
kzðω 0Þ − 1 ≈

1

24
ð ~kzðω 0ÞΔzÞ2

�
1 −

�
cσΔt 0

Δz

�
2
�
; (D-13)

where cσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0∕μσ

p
is the propagation velocity through the half-

space with conductivity σ. This in turn leads to

gðz; ð1þ iÞ ffiffiffiffiffiffiffiffiffi
ωω0

p Þ

≈ e
− zΔz2

12δ3ðωÞ

�
1−



cσΔt 0
Δz

�
2

�
e
−i zΔz2

12δ3ðωÞ

�
1−



cσΔt 0
Δz

�
2

�
(D-14)

and

jgðz; ð1þ iÞ ffiffiffiffiffiffiffiffiffi
ωω0

p Þj ≈ 1 −
zΔz2

12δ3ðωÞ
�
1 −

�
cσΔt 0

Δz

�
2
�
;

(D-15)

with δðωÞ being the skin depth at angular frequency ω in the half-
space with conductivity σ.

In general, referring to equations D-14 and D-15, we see that
conditions D-14 and D-15 approximately hold for all z ≤ 2mδðωaÞ
if

Δz <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γ

m
δ2ðωaÞ þ ðcσΔt 0Þ2.

r
(D-16)

Note that cσΔt 0 will be independent of ω0 if Δt 0 is chosen based on
stability criterion 14. Clearly, as ωa decreases, δðωaÞ increases, the
interval z0 ≤ z ≤ z0 þmδðωaÞ over which condition 15 or 16 must
hold becomes larger, but so does the maximum allowed vertical
spacing Δz. We hence see that Δz can be gradually increased as
a function of depth.

APPENDIX E

ADJOINT STATE SOURCES

The adjoint state electric and magnetic dipole sources depend
on the impedance misfits and the predicted fields at the receiver
locations. The iteration index n is omitted in the following. Let
ΔBijðxr;ωÞ be defined as

ΔBijðxr;ωÞ ¼ Wijðxr;ωÞ
ΔZijðxr;ωÞ
Hdetðxr;ωÞ

; (E-1)

with

Hdetðxr;ωÞ ¼ Hxxðxr;ωÞHyyðxr;ωÞ
−Hxyðxr;ωÞHyxðxr;ωÞ; (E-2)

where for receiver xr and angular frequency ω, Hijðxr;ωÞ denotes
the i-component of the predicted magnetic field due to a j-polarized
MT source. The electric source contributions to the adjoint state are
then

ΔJxxðxr;ωÞ ¼ ΔBxxðxr;ωÞHyyðxr;ωÞ
− ΔBxyðxr;ωÞHxyðxr;ωÞ;

ΔJyxðxr;ωÞ ¼ ΔByxðxr;ωÞHyyðxr;ωÞ
− ΔByyðxr;ωÞHxyðxr;ωÞ;

ΔJxyðxr;ωÞ ¼ ΔBxyðxr;ωÞHxxðxr;ωÞ
− ΔBxxðxr;ωÞHyxðxr;ωÞ;

ΔJyyðxr;ωÞ ¼ ΔByyðxr;ωÞHxxðxr;ωÞ
− ΔByxðxr;ωÞHyxðxr;ωÞ;

(E-3)

and the magnetic source contributions are
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ΔKxxðxr;ωÞ ¼ ΔBxxðxr;ωÞZxxðxr;ωÞHyyðxr;ωÞ
þ ΔByxðxr;ωÞZyxðxr;ωÞHyyðxr;ωÞ
− ΔBxyðxr;ωÞ½Exyðxr;ωÞ − Zxyðxr;ωÞHyyðxr;ωÞ�
− ΔByyðxr;ωÞ½Eyyðxr;ωÞ − Zyyðxr;ωÞHyyðxr;ωÞ�;

ΔKyxðxr;ωÞ ¼ ΔBxxðxr;ωÞ½Exyðxr;ωÞ − Zxxðxr;ωÞHxyðxr;ωÞ�
þ ΔByxðxr;ωÞ½Eyyðxr;ωÞ − Zyxðxr;ωÞHxyðxr;ωÞ�
− ΔBxyðxr;ωÞZxyðxr;ωÞHxyðxr;ωÞ
− ΔByyðxr;ωÞZyyðxr;ωÞHxyðxr;ωÞ;

ΔKxyðxr;ωÞ ¼ −ΔBxxðxr;ωÞZxxðxr;ωÞHyxðxr;ωÞ
− ΔByxðxr;ωÞZyxðxr;ωÞHyxðxr;ωÞ
þ ΔBxyðxr;ωÞ½Exxðxr;ωÞ − Zxyðxr;ωÞHyxðxr;ωÞ�
þ ΔByyðxr;ωÞ½Eyxðxr;ωÞ − Zyyðxr;ωÞHyxðxr;ωÞ�;

ΔKyyðxr;ωÞ ¼ −ΔBxxðxr;ωÞ½Exxðxr;ωÞ − Zxxðxr;ωÞHxxðxr;ωÞ�
− ΔByxðxr;ωÞ½Eyxðxr;ωÞ − Zyxðxr;ωÞHxxðxr;ωÞ�
þ ΔBxyðxr;ωÞZxyðxr;ωÞHxxðxr;ωÞ
þ ΔByyðxr;ωÞZyyðxr;ωÞHxxðxr;ωÞ: (E-4)

The complex conjugates of the above electric and magnetic dipole
source functions are used in equations 25 and 26 for the estimation
of the time-domain sources.
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