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Efficient computation of approximate low-rank Hessian for 3D CSEM inversion
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SUMMARY

Use of controlled-source electromagnetics for increasingly
challenging exploration applications has led to the requirement
for more powerful 3D inversion approaches. For 3D cases, ap-
plication of Gauss-Newton algorithms is limited by the compu-
tational cost required to compute the Hessian matrix and solve
for the model update. We consider a low-rank approxima-
tion to the Hessian matrix, which has the potential to reduce
the numerical complexity drastically. The scheme is based
on computing Green functions for phase-encoded groups of
sources instead of incorporating sources individually. We de-
scribe the implementation and demonstrate the feasibility of
the approach by numerical examples. We also give a theoreti-
cal analysis of the errors introduced by the approximation and
how to mitigate them.

INTRODUCTION

The application of 3D controlled-source electromagnetics
(CSEM) to image and characterize targets in increasingly chal-
lenging environments has motivated the development of more
powerful inversion methods. The target response often rep-
resents a small perturbation of the measured signal response
from complex background resistivity variations. When the ge-
ological understanding is limited, we require the 3D CSEM
inversion to reconstruct from the data not only the potential
hydrocarbon reservoir target, but also an accurate representa-
tion of the background resistivity variation and the structural
framework.

The Gauss—Newton optimization algorithm is known to work
well for inversion of CSEM data when assumptions of lower
spatial dimensionality can be applied (Abubakar et al., 2006;
Mittet et al., 2007). When a 3D model description is required,
and when the input from state-of-the-art 3D acquisition is to
be used, the numerical complexity of the Gauss—Newton algo-
rithm can be very large (Abubakar et al., 2009; Sasaki, 2011).
The large size of the Jacobian and Hessian matrices, as well
as the number of 3D forward simulations can be a severe lim-
itation. This has been addressed by several authors consider-
ing schemes to reduce the numerical cost by e.g. model repa-
rameterization (Lin et al., 2013), and input data decimation
(Schwarzbach and Haber, 2011). Gradient-based approaches

to 3D CSEM inversion, like conjugate-gradient and quasi-Newton

are less computationally demanding, and are now commonly
used (Mackie et al., 2007; Stgren et al., 2008). However, these
approaches are most accurate when a good background model
has been built. The construction of the background model can
be a demanding task if the geology is complex and if little other
geophysical data is available.

In this paper we present a Hessian approximation based on the
superposition of phase-encoded sources. This approach leads
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to a low-rank representation of the Hessian matrix, and allevi-
ates the computational cost of constructing and storing this ma-
trix as well as the solution of the Gauss—Newton equation. We
show by numerical examples how the approximation is able to
capture important features of the Hessian, at a numerical cost
that is up to two orders of magnitude smaller than the exact
calculation. The low-rank approximation was introduced by
Amaya et al. (2014) and is here expanded to include a more
detailed consideration of the grouping of sources and the ef-
fect the grouping has on accuracy and on forward modeling.

GAUSS-NEWTON OPTIMIZATION AND HESSIAN
APPROXIMATION

The inversion of CSEM data is formulated as an optimization
problem
o = arg min £(0), (1)
cell

where o is a 3D conductivity model in the set .#Z of models
compatible with a priori information, and € is the cost function.
This cost function includes both regularization terms and data
misfit terms that are dependent on the observed data,

2
€pata (0) = Z ‘VVIF (rix|rex, f) AF; (rix|rix, f30)
F‘,ivarrx-,rlx

(2)
Here AF = FOPS — pSYnth represents the difference between
observed and synthetic fields (F = E for electric and F = H
for magnetic), W is a datum weight (typically inverse mea-
surement uncertainty), i are the spatial components (x,y) of
the field recordings, f are the frequencies, ryy is a receiver po-
sition, and ri is a source position. The shorthand notation
K = (F,i, f,r, rix) will uniquely label a measurement.

The non-linear optimization problem is solved by iteratively
updating the conductivity model. The Gauss—Newton equation
for model updates Ac is HAc = —g where

H=JJ+cec. 3)

is the Hessian matrix constructed from the Jacobian matrix J,
and

g=> WiAF{(J)x+cc. @

is the model parameter gradient of the cost function. The c.c.
denotes complex conjugated term. The Jacobian is a complex
N x M matrix where N is the number of data samples, and
M is the number of model parameters. The Jacobian can be
constructed from Green functions,

@) Kr :vviF (rx|rex, f) Z Gf:;rjl (rix|r, f)

X ZGﬁ:ﬁ (r|rtX7f) J” (rtX7f)7 (5)
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where r is the position in the model, GZ’J,, denotes the Green
function for field F, component m, from a unit electric cur-
rent source in direction n, and J,, is a component of the source
(m,n = x,y,z). It is straightforward to generalize the expres-
sion in (5) to the anisotropic and discrete case. From this
expression, we see that explicit construction of the Jacobian
requires the Green function associated with every source posi-
tion r¢ to be calculated.

The gradient in (4) can be computed efficiently and without
explicitly constructing the Jacobian by the use of adjoint state
modeling. In this case, the factors W AF) are used as the
source strength in simultaenous source simulations for each re-
ceiver component after the synthetic data has been calculated.
An implementation of such approach is described in Stgren
et al. (2008).

The Hessian matrix is a real M x M matrix, with rank given by
the number of rows in the Jacobian (Grayver et al., 2013), i.e.

rank(H) =2 NF Nf N,’ Nix Ntx- (6)

Here, and throughout, the notation N, denotes the number of
unique elements of index a. For a state-of-the-art 3D CSEM
survey and with a realistic model representation, the numerical
complexity involved with the construction of H and the solu-
tion for the model update can be very large. The number of
forward solutions required can be of order 104, and the dense
linear system for Ac can be of size 10° x 10°. In this paper,
we consider a low-rank approximation where sources in (5)
are combined after encoding with a random phase factor, i.e.
we construct 3 ., €% (J), for a group of sources s associ-
ated with a receiver component, and where @y are uniformly
distributed random numbers in the interval [0, 27r). The num-
ber of source groups Ny and the grouping scheme will be dis-
cussed below. Following this approach, the factors of J associ-
ated with the sources in a source group and a specific receiver
component are calculated from a single simultaneous-source
(super-shot) forward solution of the Maxwell equations. We
denote the output of such simulation,

G{mmms (l‘,f) =
Z VViF (rex|res, £) Jn (Tex, f) elfrines Gfuﬁ (rfre, /). (D)

n,ry€s

The approximate Hessian matrix H following from the Jaco-
bian constructed in this approach becomes,

H(r,r')= Z

Foi,fXe,s

ZG;‘ZJ (er ‘r/,f) an.,rms (r/,f)
n

The rank of the approximation is given by the number of terms
in the outer sum,

> G (eelr f) G s (r,f)}
m

*

X +c.c. (8)

rank(H) = 2 Ng Ny N; Nix N;. )
Note that both the rank and the storage requirement to con-
struct H scale by Ny instead of N as for H. The reduction
in numerical complexity from the approximation is described
below, but it is realistic that the ratio N /Ny can be of order
10 — 100 meaning a dramatic decrease in complexity.
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SOURCE GROUPING STRATEGIES

Several strategies can be used in order to form the group of
sources, as introduced in (5). In this section we will explore
three configurations, shown schematically in Figure 1 below.
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(a) Four groups of sources gathering
closest ones in a single group simulation

(b) Four groups of sources gathering
randomly the different sources in a sin-
gle group simulation
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(c) Four groups of sources gathering
distant sources in a single group sim-
ulation

Figure 1: Examples of different strategies for source grouping.
The triangles represent source positions, and the points with
the same color are grouped.

In the example shown in Figure 1 the sources are arranged in
four groups. In Figure 1(a) the sources are grouped such that
each group covers a particular area. In Figure 1(b) the sources
are grouped randomly, and in 1(c) the groups are selected by
maximizing the distance between the sources. Numerical stud-
ies described below have shown that using groups based on a
largest distance, as in Figure 1(c), gives the best result. This is
in agreement with the qualitative argument in the next section
which predicts that approximation errors decay with increas-
ing separation between simultaneous sources in (7).

Once the groups of sources have been established, one forward
modeling per group of sources and receiver component is per-
formed, using Wl.F (rix |rx, f) 9Firs s as the strength for each
source in a group. Linearity of the Maxwell equations implies
that this is equivalent to the summation of individual terms in
(7). The random phase factors e'9Firxs are sampled indepen-
dently for ¢ at each source position.

The number of forward simulations needed for building the
Hessian matrix in a standard Gauss-Newton implementation,
Nsim, and with the low-rank approach, Ng;,, are

Nsim = Nix - Ne - Np + Ng - Nix
Nsim = Nix - Ne - Np + Ny - Ny - Niy.

(10a)
(10b)

With realistic values for a modern 3D CSEM survey, Ngjy, is
dominated by the number of sources Nix. The ratio Ng;,, /Nsim
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then displays a decrease in the number of forward modeling
jobs whenever N - Nix /Nix < 1.

It is not only the reduction in number of forward computa-
tions which will alleviate the computational complexity. For
the Jacobian, or equivalently the Green functions required to
construct it, the volume of data in standard Gauss—Newton in-
version scales linearly with Ni. Using the approximateion de-
scribed here, this scaling is instead given by Ns. In the same
way, the low-rank approximation allows a Hessian representa-
tion using considerably less memory when N is small by stor-
ing the quantities in square brackets in (8). In addition to the
savings on number of forward solutions and memory require-
ments, we expect that solving the Gauss—Newton equation can
be done very efficiently by exploiting the low-rank property of
the Hessian matrix in (8).

QUALITATIVE ANALYSIS OF THE APPROXIMATION
ACCURACY

Consider now the errors introduced by the approximation of
the Hessian in (8). Due to the summation over source posi-
tions in G, the approximation will include terms involving two
different source positions. Such terms are illustrated schemati-
cally in Figure 2 where (a) shows contributions from one source
position, as in a standard Hessian, and (b) shows the additional
terms introduced through the low-rank approximation.

r r '
(a) —pix ®) —ptx i
X y >
r T r '

Figure 2: (a) Diagram representing terms included in the Hes-
sian H. Arrows correspond to Green functions, with reverse
directions indicating complex conjugation. Source strength
factors W (i |rex, £) I (Xix, f) el%rires are associated with
source positions. (b) Diagram representing the additional
cross-talk terms introduced into H, where two separate source
positions give a contribution.

We refer to these errors as “cross-talk” and denote their contri-
bution 7, such that H = H+ 7. The source-diagonal terms,
involving only a single ri, are the terms that make up the
exact Gauss—Newton Hessian H. The random phase-factors
el? introduced in (7) will cancel in the source-diagonal terms
since they enter as an absolute value. However, for the cross-
talk terms, where two different source points are involved, the
phase factors remain and act to suppress the cross-talk in the
outer summation in (8). This is similar to applications of phase
encoding in seismic modeling, see e.g. Bansal et al. (2013).
The number of source-diagonal terms contributing to H is pro-
portional to Ni. The number of cross-talk terms contribut-
ing to n will scale with the number of sources as N& (assum-
ing Ny = 1). However, the magnitude |17| should scale by the
square root of the number of terms. This is due to the cancel-
lations from random phases e!?* of the cross-talk terms and by
analogy to a Gaussian random walk. We therefore expect lin-
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Figure 3: Eigenvalue distribution from various source group-
ing strategies, with Ny = 12 and rank = 600.

ear scaling |1| ~ Ni. Further, the number of significant terms
contributing to 1 should be even less due to the exponential
decay of the Green functions. This means that for cross-talk
terms where |r — ryy| is large the magnitude of the contribu-
tion to |7| is very small. Thus the magnitude || scales by the
number of sources in a source group as (Nx)% with a < 1.
In summary, the asymptotic behavior of the approximation is
feasible since limy, 0. |17|/|H| = 0.

We can reduce the error of the approximation by increasing
the number of source groups Ns. In fact, using the maxi-
mum Ny = N makes H identical to H, but in this case there
is no reduction in computational cost. We can optimize the
approximation by constructing the source groups with max-
imum separation between the spatial locations of sources In
this case, each cross-talk contribution shown in Figure 2 (b)
will be smaller compared to a source-diagonal contribution in
Figure 2 (a) by the decay of the Green functions over distance
|rix — rf;|. This supports the numerical results where source
groups based on the maximum distance between sources were
found to give the highest accuracy, as is discussed in the results
section. The distance between sources is thus a tuning param-
eter for the accuracy of the approximation that determines the
number of source groups N and the strength of the cross-talk
noise.

RESULTS

In this section we will show numerical results for the low-
rank Hessian approximation. Figure 3 shows the eigenvalue
distributions for the three methods of grouping sources illus-
trated in Figure 1, and also the distribution for the Hessian of
standard Gauss—Newton. In this example the groups are cho-
sen such that the rank of the approximate Hessians is 600. It
is seen that source grouping based on maximum distance has
an eigenvalue distribution that is closer to that of the standard
Gauss—Newton Hessian, than the other two methods of group-
ing. This is consistent with the discussion above that suggests
that the grouping based on maximum distance is the most ac-
curate.

The following results show model updates computed for an
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example CSEM survey, using both the Gauss—Newton update
and the approximation scheme described above. In the exam-
ple, the inversion parameterization is a regular grid with cell
size 200 m x 200 m x 100 m and the total number of cells is
28275. The survey layout is detailed in Figure 4 with a total of
10500 data samples.
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Figure 4: True model and survey layout for the example CSEM
survey. The water conductivity is 4 S/m, and the water depth
is 500 m. A resistor is located at 1.5 km depth, with dimen-
sions 3 km x 2 km x 0.1 km, and conductivity 0.02 S/m. The
formation conductivity is 1 S/m. There are 5 towlines and 25
receivers recording E, and E at 0.25 and 1.0 Hz. The source
distance is 300 m along towlines.
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Figure 5: Model updates Ao at y = 3000 m.

The Gauss—Newton equation was solved using a conjugate gra-
dient method with a small stabilizer and an initial model with
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the correct background conductivity. Figure 5 shows the so-
lution for three cases using (a) the approximate Hessian ma-
trix H, (b) the exact Gauss—Newton Hessian matrix H, and (c)
steepest descent (H — 1). The approximate Hessian was ob-
tained using one source group per receiver channel (Ny = 1).
Comparing (a) with (b) and (c), we see that the solution to
the Gauss—Newton equation with the approximate Hessian ma-
trix is qualitatively more similar to a solution with the exact
Hessian matrix than a steepest descent solution. In particular,
much of the sensitivity information in H remains in H as seen
at depth. Table 1 shows key characteristics for the computa-
tional cost of inversion for the example survey as well as for a
larger, more realistically sized 3D CSEM survey. As is shown
in the table, the number of forward simulations is reduced with
a factor 2.6, however in a larger survey the reduction in com-
putational cost can be much larger while keeping the error at
the same level.

Case  Numerical cost GN Approx. H Ratio
a) Nsim 260 100 2.6
a) J size 4.4 GB 43.1 MB 105
b) Nsim 11800 1000 11.8
b) J size 127.4 TB 68.7 GB 1900

Table 1: Computational cost comparison for exact Gauss—
Newton and the approximation scheme, for a) the simple ex-
ample case shown in Figures 4 and 5, as well as b) large-scale
realistic survey.

The data for the realistic survey in Table 1 were obtained from
asurvey area of 30 kmx20 km x4 km, with 10 towlines at 2 km
line separation and a source distance of 100 m along the tow-
lines. In total we obtain 5700 source positions recorded at 100
receiver sites, measuring the horizontal components of electric
and magnetic fields at 4 frequencies. The same discretization
as in the smaller example is assumed, for two anisotropy com-
ponents. The survey has a total of 14.59 million data samples.
Using three source groups (N; = 3) we keep the simultaneous
source separation at 300 m such as in the smaller example sur-
vey discussed above. The size of the Hessian will be 2.6 TB,
but the Jacobian representation in the approximation scheme
offers a 40-fold reduction in size. The approximation error, 17,
could be reduced by increasing the number of source groups,
but the computational cost would increase.

CONCLUSIONS

We have described a low-rank approximation to the Hessian
for Gauss—Newton 3D inversion of CSEM data. The scheme
is based on superposition of phase-encoded sources, and we
have demonstrated the potential to significantly reduce both
the number of forward simulations and memory requirements
for inversion.
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