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Summary 

 

Electromagnetic signals are exponentially attenuated in 

conductive media. Thus, marine controlled-source 

electromagnetic (CSEM) data where the source and the 

receivers are located in the water column has exponentially 

low sensitivity towards the deep stratigraphy, compared to 

the shallow stratigraphy. In addition, CSEM inversions are 

also highly non-linear and ill-posed. It is therefore often 

difficult to achieve good inversion results for the deeper 

part of the subsurface using gradient based inversion 

methods. 

 

In this abstract, we describe a large-scale 3-dimensional 

anisotropic Gauss-Newton (3DGN) CSEM inversion 

implementation and discuss its advantages over gradient 

based algorithms. We also show, by synthetic and real data 

case studies, the large improvements in the 3DGN 

inversion results compared to those from the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm. 

 

 

Introduction 

 

CSEM is a method for remotely measuring the resistivity of 

the subsurface (Cox, 1980; Chave and Cox, 1982). Its 

sensitivity towards thin resistive layers has sparked a large 

interest in the hydrocarbon exploration and exploitation 

industry (Eidesmo et al., 2002; Ellingsrud et al., 2002; 

Constable, 2010; Løseth et al., 2015). CSEM data are 

typically inverted into resistivity models for interpretation 

and integration with other geophysical data. 

 

Geophysical data inversion problems are typically non-

linear and ill-posed (Tarantola, 1987; Zhdanov, 2002). 

Many distinct different models fit the measured data within 

the measurement uncertainties. Furthermore, for a 

vertically propagating plane wave, the electric field 

amplitude decays as |𝐸|~|𝐸0|𝑒−𝑧/𝛿 . Here 𝐸0 is a constant, 

𝑧 is the depth and the electromagnetic skin depth 𝛿 ≈

500√𝜌/𝑓  where 𝜌 is the formation resistivity and 𝑓 is the 

frequency. The inversion ambiguity together with the 

exponential sensitivity variations cause large problems for 

all gradient based inversion algorithms when it comes to 

CSEM data. High sensitivity leads to large updates close to 

the sources and receivers, trapping the CSEM inversions 

into local minima where the responses from deep buried 

resistive bodies are projected into shallow artificial 

anomalies. 

 

Sensitivity enhancement methods are typically based on 

some assumptions, like properties of a background model. 

However, due to the strong exponential attenuation of the 

EM signal, a small error in the model used to estimate the 

sensitivity causes large errors in the sensitivity 

compensation, leading to poor inversion results. More 

advanced gradient based methods, like BFGS, where the 

Hessian is estimated from the gradients of a limited number 

of previous iterations, may improve the inversion results. 

However, as we will show below, the Gauss-Newton 

algorithm provides superior inversion results for CSEM 

data when compared to the BFGS algorithm.  

 

Many different inversion algorithms have been employed 

to invert CSEM data. From simple gradient based methods 

like conjugated gradient (Commer and Newman, 2008;  

Zhdanov et al., 2014), to the more advanced BFGS (Zach 

et al., 2008) to the costly Hessian/Gauss-Newton based 

method (Li et al., 2011; Sasaki, 2013) have been tested on 

CSEM data. To our knowledge, studies using 

Hessian/Gauss-Newton tools on full-scale 3D CSEM data 

sets have not been published. 2.5-dimensional Gauss-

Newton inversion implementations have provided very 

good inversion results when the geology is close to 2-

dimensional, examples are Hansen and Mittet (2009); Key 

(2012); Tseng et al. (2015); Wiik et al. (2015). 

 

 

Theory 

 

We now turn our attention to the theoretical aspects of 

Gauss-Newton CSEM inversions. We first define a cost 

function ε(σ) 

 

𝜀(𝜎) = 𝜀𝑑(𝜎) + λ𝜀𝑚(𝜎) 

 

where σ is the conductivity. The subscripts d and m denote 

data and model, respectively, and λ is a regularization 

strength parameter. The data misfit is defined as a weighted 

difference between observed and modelled data   

 

𝜀𝑑(𝜎) = |𝛥𝑭|2 
 

where the complex difference-field vector 𝛥𝑭 = 𝑭𝑠𝑦𝑛𝑡 −
𝑭𝑜𝑏𝑠, the super-scripts synt and obs denote synthetic and 

observed, respectively. The i-component of the weighted 

field 𝐹𝑖 = 𝐸𝑖/∆𝐸𝑖 where 𝐸𝑖 is one electromagnetic field 

data point and ∆𝐸𝑖 is the measurement uncertainty and 

noise associated to that data point (Maaø and Nguyen, 

2010; Mittet and Morten, 2012). The regularization term 
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Large-scale 3D Gauss-Newton CSEM inversion 

𝜀𝑚(𝜎) is used to stabilize the underdetermined inversion 

problem (Tarantola, 1987; Zhdanov, 2002). 

 

The model update for the data contribution only using the 

steepest descent method is 

 

𝛥𝝈 = −𝛾𝒈 = −2𝛾Re{ 𝑱†𝛥𝑭} 

 

where 𝛾 is the step length to be determined through a line 

search along the gradient direction 𝒈.  𝑱 is the Jacobian and 

† is the complex conjugate. Within the first Born 

approximation, the ij-element of the Jacobian  𝐽𝑖𝑗 =
𝑑𝐹𝑖

𝑑𝜎𝑗
~𝐺(𝑠, 𝜎𝑗)𝐺(𝜎𝑗 , 𝑟) where 𝐺(𝑠, 𝜎𝑗) is a Green’s function 

from source 𝑠 to model element 𝜎𝑗  and 𝐺(𝜎𝑗 , 𝑟) a Green’s 

function from 𝜎𝑗  back to the receiver 𝑟. We see already 

here that the data sensitivity towards a deep buried 𝜎𝑗  is 

exponentially attenuated on the way down from source to 

𝜎𝑗  and then once more on the way back to the receiver. 

Furthermore, for an order of magnitude estimate of 𝛥𝑭, let 

us assume that 𝑬𝑜𝑏𝑠 represent data from a background 

model while 𝑬𝑠𝑦𝑛𝑡 represent data from the same 

background model with a small 𝑑𝜎𝑗 perturbation. Then 

𝐸𝑖
𝑠𝑦𝑛𝑡

− 𝐸𝑖
𝑜𝑏𝑠~𝐺(𝑠, 𝜎𝑗)𝐺(𝜎𝑗 , 𝑟). Thus, the suggested model 

update suffers four exponentially damping terms (Green’s 

functions) in the gradient descent method. This leads to a 

huge sensitivity difference between a shallow buried 𝜎𝑗′ 

from a deep buried 𝜎𝑗 . Given that CSEM inversion is 

highly non-linear and underdetermined, this sensitivity 

difference often causes undesirable inversion results using 

gradient based algorithms. 

 

The model update for the data contribution only using the 

Gauss-Newton algorithm is 

 

𝜟𝝈 = −𝛾(2Re{𝑱†𝑱})−1𝒈 
 

Here, we see that the sensitivity problem in the gradient 

update direction is preconditioned with 𝑱†𝑱 which takes 

into account attenuation and geometrical spreading.  

Similar arguments have also been put forward in Causse et 

al., (1999) for seismic full-waveform inversion. The Gauss-

Newton algorithm provides, thus, much better sensitivity 

balancing than gradient-based algorithms for CSEM 

inversion. 

 

 

Method 

 

Setting up and solving the Gauss-Newton equation for a 

large-scale CSEM dataset and model is a formidable 

computational task. In order to obtain a computational cost 

for a Gauss-Newton inversion that is similar to a Quasi-

Newton inversion we exploit 1) the sparsity of the Jacobian 

and 2) that limited sensitivity allows for a much lower 

number of inversion parameters than modelling parameters. 

The decoupling of modelling and inversion parameters is 

done through a mapping that reduces the number of 

unknowns with one order of magnitude. The mapping also 

functions as an implicit regularization.  

 

Even when the sparsity of the Jacobian has been 

considered, the Jacobian is still too large to fit in memory 

on typical high performance computer nodes. We therefore 

use a hybrid MPI/OMP parallel implementation where the 

Jacobian is distributed on several nodes. In a gradient based 

method, it is not necessary to do a forward modelling for 

each source point (Støren et al., 2008), however in order to 

compute the Jacobian matrix, one forward modelling for 

each source position is necessary. For maximum efficiency, 

the distribution of workload on the nodes is done with a 

graph partitioning scheme using the SCOTCH library 

(Chevalier and Pellegrini, 2008), which distributes load 

based on the number of non-zero elements in the Jacobian, 

and how many Green’s function files that must be read on 

each node. More details of our implementation will be 

provided in a later publication (L. Boman, personal 

communication, 2016).  

 

In order to illustrate the improved inversion results 

obtained with Gauss-Newton, compared with BFGS, we 

now consider two test cases, one with synthetic data and 

one with real data. The inversions were full azimuth 3D 

anisotropic. However, only the vertical resistivity results 

are presented due to the abstract length limit. 

 

 

Synthetic data example 

 

In this section, we show a comparative study between the 

3DGN and the BFGS algorithm using a synthetic data set 

we have called Circus.  

 

The Circus model, shown in Figure 1a and 1b, has two 

targets: A shallow target about 850 m below the seabed 

(2400 m below sea level), which is 100 m thick and has a 

resistivity of 12 Ωm, and a deeper target at about 1700 m 

below the seabed (3300 m below sea level), having a 

resistivity of 50 Ωm and a thickness of 50 m. The deeper 

target is placed mainly below the shallower target, and this 

relative position of the targets is chosen since experience 

show that stacked targets are challenging to image in a 

BFGS inversion. The water depth varies from 1000 m to 

1800 m, and there are several layers of resistivity 

increasing with depth. Artificial noise was added to the 

simulated data with a multiplicative noise standard 

deviation of 0.02, and this noise level was also used in 

calculating the data weights in the inversion.  
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Large-scale 3D Gauss-Newton CSEM inversion 

Data from 60 receivers was inverted; see the receiver 

layout in Figure 1a.  Source-receiver offset ranges up to 12 

km were included, in total 901 source points along 4 

towlines. The horizontal Ex and Ey electric fields were 

inverted for 4 frequencies between 0.1 and 1.0 Hz, giving a 

total of 142000 data points in the inversion. The start model 

used in the inversion tests is shown in Figure 1c. It has a 

simple resistivity profile increasing with depth, but contains 

no structural information.  

 

The BFGS inversion images one anomaly at a depth 

approximately 3000 m below sea level, see Figure 1. The 

result shown was obtained in 77 iterations (including line 

searches) and has an RMS misfit of 0.92. The Gauss-

Newton inversion images the two targets, one at 2400m 

depth (below sea level), and one at 3200 m depth. The 

result shown was obtained in 12 Gauss-Newton iterations, 

and has an RMS misfit for the data of 0.92. 

 

Figure 1 clearly shows the improvement in the inversion 

results from the Gauss-Newton algorithm compared to the 

BFGS algorithm. Due to the large sensitivity difference, the 

BFGS algorithm has fitted the data by updating the very 

shallow sections right below the receivers, taking the 

inversion path from the initial model into a less favorable 

local minimum where the important anomalies are not 

imaged properly. The 3DGN algorithm on the other hand 

leads the inversion into a better local minimum where the 

updates are more balanced and thereby correctly split the 

two anomalies and places them at the correct location. 

 

 

Real data example 

 

In this section, we show 3DGN and BFGS inversion results 

for the 3D Snøhvit CSEM dataset acquired in 2010 through 

the EDDA consortium. Snøhvit is a gas/condensate field 

located in the central part of the Hammerfest Basin in the 

Barents Sea. The water depth is around 300 m. The depth 

of the reservoirs varies between 2000-2500 m. We use the 

horizontal electric fields Ex and Ey with the frequencies 

0.5, 1.0 and 2.0 Hz with 11000, 9000 and 8000 m 

maximum source-receiver offset, respectively. The number 

of inversion parameters is 563000, the number of data 

points amount to 160000. 

 

The initial model is created by a simple three-layer model; 

water, upper formation and lower formation separated by 

the seabed and the Base Cretaceous Unconformity (BCU). 

We populate the upper and lower formations with vertical 

resistivity of 6 and 20 Ωm, and horizontal resistivity of 3 

and 5 Ωm, respectively. The models are then smoothed 

before used in the inversion. The BFGS inversion used 100 

iterations, including line search, to reach a RMS data misfit 

of 0.92. The 3DGN inversion used 5 Gauss-Newton 

iterations to reach a data misfit of 1.2. The multiplicative 

data uncertainty (Maaø and Nguyen, 2010) is set to 5%. 

The additive noise is estimated based on statistical stacking 

variances of short FFT windows as part of the data pre-

processing. 

 

Figure 2 shows the initial, BFGS and 3DGN inverted 

vertical resistivity models. To reduce the dominance of the 

resistive anomalies with peaks above 300 Ωm, we show the 

models in logarithmic scale. We see that the BFGS result 

contains many resistive anomalies right below the 

receivers. We believe that is due to the sensitivity problem 

discussed in the theory section. Consequently, the 

resistivity anomaly that should have been at the Snøhvit 

reservoir is reduced in strength. In the Albatross case, it is 

not reconstructed at all. On the other hand, we see that 

3DGN has reconstructed the southern Albatross anomaly. 

Furthermore, 3DGN has much stronger update of the 

Snøhvit anomaly compared to BFGS, 300 versus 100 Ωm, 

respectively. The difference is clearly visible even in a 

logarithmic color scale. The resistivity value for the 

Snøhvit anomaly is also much more consistent with 

resistivity logs for the 3DGN case. The origin of the 

resistivity anomaly in the area between Albatross and 

Snøhvit is at present still unknown. 

 

 

Conclusions 

 

We have described a large-scale 3D anisotropic Gauss-

Newton CSEM inversion implementation and discussed its 

advantages compared to gradient based implementations. 

The case studies on synthetic and real data show a large 

improvement in the results when compared to results from 

the gradient based BFGS algorithm when everything else is 

equal. 3DGN inversion was able to construct the resistive 

anomalies at the correct depths with much more accurate 

resistivity values. 

 

The synthetic Circus case shows that while the BFGS 

inversion is not able to separate the two stacked targets the 

3DGN inversion correctly images the two targets at correct 

depths. In addition, BFGS also creates an erroneous low 

resistivity layer right under the receivers. 

 

The Snøhvit real data case shows that 3DGN reconstruct 

the smaller Albatross anomaly while BFGS does not, for 

the given initial model. Furthermore, the Snøhvit anomaly 

mapped by 3DGN is much stronger and more consistent to 

resistivity logs, compared to the resistivity anomaly from 

the BFGS inversion. In addition, BFGS creates many 

artificial resistive anomalies right beneath the receivers. 
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Large-scale 3D Gauss-Newton CSEM inversion 
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Figure 1:  Synthetic data example a) Survey layout and target 

outlines. The lines show the towlines, the solid line the line shown 
in the figures b-e. b) The true model used to generate the Circus 

data set. c) Initial model used in the inversions. d) BFGS inversion 

result e) 3DGN inversion result. Notice that both inversions were 
run anisotropic, but only the vertical resistivity models are shown. 

 

 

 

Figure 2:  a) Receiver and discovery outlines, from bottom to top: 

Albatross, Snøhvit and Snøhvit north. Color indicates depth of 

BCU which coinside with top reservoir. Yellow line shows the 
position of the sections in c,d and e. b) geographic location of the 

Snøhvit field. c), d) and e) initial, BFGS inverted and 3DGN 

inverted vertical resisticity models in log scale, overlaid the 
seismic section. Well log of the horizontal resistivity is also shown 

in c, d and e. 
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