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SUMMARY
Gradient-based 3D inversion of controlled-source electromagnetic (CSEM) data requires the gradient to a
data-misfit functional to be computed within the volume where we seek to find a resistivity model that
explains the observed data. Since 3D inversion typically requires more than 100 iterations in order to
converge to a good model, fast modelling is important to make 3D inversion a feasible tool in advanced
interpretation of CSEM data. We have previously presented a fast finite-difference time-domain (FDTD)
modeling code which reduces the computational time of a typical modelling scenario by a factor of 40. In
this presentation we show how we use this FDTD modeling to efficiently compute the misfit gradient. A
benefit of this approach is that the gradient can be computed for several frequencies in one forward
modelling thus saving valuable computational resources when inverting data from a large number of
receivers. We present results showing that the gradients obtained are well-behaved. We also present results
from inversion of synthetic data based on these gradient calculations showing that, for this specific
example, a good result was obtained for the inverted resistivity model after relatively few iterations.
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Introduction 
Marine controlled-source electromagnetic (CSEM) surveying has been used for geophysical 
investigations since 1979 (Spies et al., 1980). Since hydro-carbon bearing sediments tend to 
have higher resistivity than water-saturated sediments CSEM measurements are sensitive to 
the presence of sub-surface hydro-carbons. During recent years the method has been put into 
use for offshore petroleum exploration (Eidesmo et al., 2002).  
 For complex geological settings, e.g. presence of hydrates or other resistive 
formations or large variations in bathymetry, the classic interpretation of CSEM data, where 
anomalies are identified by comparing the electromagnetic responses to a reference response, 
can be challenging. The aim of 3D inversion of CSEM data is to obtain a three-dimensional 
resistivity model of the subsurface which explains the observed data. The problem is 
inherently ill-conditioned, but combined with knowledge about geology, and possibly 
combined with other types of data, e.g. through various joint-inversion approaches, inversion 
is expected to become an important tool for advanced interpretation of CSEM data.  
 Inversion is often implemented as an iterative process, where the resistivity model is 
modified in each iteration seeking to minimize the misfit between observed data and synthetic 
data computed based on the current model at that point in the inversion process (e.g. 
Newmann and Alumbaugh, 1997). Various methods for minimizing the misfit have been 
applied to CSEM data, e.g. Marquard-Levenberg optimization (Mittet et al. 2004), simulated 
annealing (Roth and Zach, 2007), regularized focusing inversion (Gribenko and Zhdanov, 
2007). For complex geological settings with no or little prior knowledge, where full 3D 
models are necessary to explain observed data, local gradient-based optimization is currently 
the only published feasible solution (Plessix and van der Sman, 2007).  
 
Gradient-based inversion 
Omitting regularization terms often used to constrain the inversion, a typical misfit functional 
based upon electromagnetic field data only is 
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where we εF denotes the kernel of the misfit functional. The sum is over source and receiver 
positions, frequency, and fields. Fi = {Ei,Hi}, is a component of the electric or magnetic field 
in direction i. Repeated indices indicate a summation over the field components. The 
difference field is defined as 
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where Fi
obs is the field observed at receiver position xr, in response to a source J at position xs. 

Fi
synth is the corresponding synthetic field for the conductivity model σ(x). The weight 

function WF is needed to balance contributions from fields at different offsets to the misfit 
functional. It can also be interpreted as being inversely proportional to data uncertainty. A 
simple weight function is the inverse squared amplitude of the observed field. 
 When the conductivity model changes slightly at position x, the synthetic field at the 
receiver position changes accordingly, leading to a change in the misfit functional. Within the 
first Born approximation, the field perturbation δFsynth due to a model perturbation δσ(x) can 
be expressed as 
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To the first order in the model change, the gradient of the misfit functional with respect to a 
change in the conductivity model can then be written 
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where the G’s denote Green’s functions computed in the model σ(x), and C.C. denotes the 
complex conjugate of the first part of the expression. The ± comes from the reciprocity 
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theorem for electromagnetic Green’s functions used in eq. 4. A +(-) is used for F=H(E). This 
approach to gradient calculation is equivalent to the approach published by Tarantola (1984). 
  The first Green’s function in eq. 4 is obtained by recording the electric field in the n 
direction at position x, due to a unit source in the i direction at position xr, throughout the 
model space. For F=E(H), S=J(M), and denotes an electric(magnetic) source. The kernel in 
the sum over source positions is equivalent to a recording of the n component of the electric 
field at position x due to a source at position xs, in the same direction as J. The amplitude for 
this source is given by 
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 Since Maxwell’s equations are linear with respect to the source term, the sum over 
source positions in eq. 4 can be computed in one modeling step by using multiple sources 
where the complex amplitude of each source is given by eq. 5.  
  
Gradient calculation using a fast finite-difference time-domain method  
We are currently using a fast finite-difference time-domain (FDTD) method for modeling the 
electromagnetic fields in the subsurface described by a 3D conductivity model. The method is 
described in detail by Maaø (2007). An important obstacle for efficiently solving equations 
for geophysical problems with a FDTD method is the wide range of velocities involved in the 
problem. To tackle this, we employ a mathematical transform of the original problem to 
reduce the frequency dependence of the transformed problem. This results in a formidable 
decrease in computational time. After the transformed problem has been solved, the data are 
transformed to the frequency domain using a Fourier transform with a complex frequency, 
yielding frequency domain data which satisfies the original problem.  
 This modeling approach represents a challenge when computing gradients of the 
misfit functional using eq. 4. The complex source amplitude needed in the backward-
propagating step in the gradient computation is specified in the frequency domain. The 
transform between the original-problem frequency domain and the modified-problem time 
domain where we perform the FDTD computation is for the computed E fields given by 
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where 
 ( ) ωαωω iii =− '1' ,  (7)                                   
and α is a parameter in the transform. The transform of the sources between the modified-
problem time domain and the original-problem frequency domain is  
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In order to find a representation of S(t’), which satisfies Eq. 8, we write the relation in matrix 
form, 
       '' tt SAS ωω = .     (9) 
Singular-value decomposition (SVD) is then used to find a well-behaved inverse to A 
enabling the calculation of St’ from the vector Sω containing the complex amplitude of the 
source at all the frequencies of interest. 
 
Test of gradient calculations on synthetic data 
The gradient calculation is tested on synthetic data from 7 receivers using the reference model 
in fig. 1. The reference model consists of a 1-Ωm homogeneous formation starting at 750 
meters water depth. A high-resistive box-formed anomaly is introduced at 1800 m depth 
below the sea surface. The anomaly has a resistivity of 25 Ωm, and dimensions 5km x 4km x 
300m in the x-, y-, and z-direction respectively. The receivers are placed at the seafloor along 
a line in the x direction over the middle of the anomaly. Using the synthetic data from the 
reference model as observed data, we compute the gradient of the misfit functional for two 
different models.  
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 Model I has the same geometry as the reference model, but contains a 10-Ωm 
anomaly. When Green’s functions for this model are used in eq. 4, we expect a positive 
gradient within the volume of the anomaly since the anomaly’s resistivity in model I is lower 
than for the reference model. Using eq. 4, the gradients are computed for each receiver. The 
gradients from all receivers are then stacked to yield the total gradient. Fig. 2(a) shows the 
gradient from the first receiver while fig. 2(b) shows the stacked gradients. As expected, the 
gradient has large positive values corresponding to the anomaly positioned correctly both in 
depth and along the axis following the receiver line.  
 Model II also has the same geometry as the reference model, but has a 50-Ωm 
anomaly. In this case the gradient is expected to have negative values within the volume of 
the anomaly. The stacked gradient is plotted in fig. 3 and we see the large negative values at 
the correct positions both in depth, and along the receiver line.  
 Finally, we show results from 3D inversion of the synthetic reference-model data 
using the data misfit and gradient from eqs. 1 and 4 as input to a quasi-Newton update 
algorithm (Byrd et al., 1995). The starting model for the inversion is a homogeneous 1 Ωm 
half-space model. The misfit functional in eq. 1 is computed from inline, electric fields using 
one frequency (0.25 Hz). Data from source-receiver offsets between 1 km and 4.5 km go into 
the misfit. Observation of equation 4 shows that due to the muting of short-offset data, the 
gradient at positions close to the receiver is dominated by the Green’s function for a source in 
the receiver position and carries little information about the reference model. The gradient for 
a single receiver in fig. 2(a) clearly shows that it is dominated by the receiver-position 
Green’s function close to the receiver. Figure 2(b) shows that when the gradients from all 
receivers are stacked, the near-receiver effect gives rise to a variation between positive values 
for the gradient in close proximity of the receivers and negative values for the gradient 
between the receivers. Since this kind of variation can cause problems in the inversion by 
introducing non-physical variations in the resistivity model close to the receivers, we choose 
to mute gradients around the receivers prior to stacking. We also choose not to update the 
topmost formation layer of the model, since variations in the model close to the seafloor can 
greatly influence the synthetic data.  
 Plots of the resistivity model and corresponding gradients for a few iterations in the 
inversion are shown in fig. 4. We see that after no more than 30 iterations, the model has 
converged to a high-resistive anomaly positioned correctly in the transversal direction 
compared to the reference-model anomaly. The center of the inverted anomaly is at about 
1700 m in depth, which is 250 m shallower than the reference-model anomaly. The gradient 
at iteration 30 indicates that further updates will increase the resistivity in the area where the 
high-resistive anomaly has appeared in the inversion model. At iteration 80 the resistivity of 
the anomaly has indeed increased, but the position and shape of the inverted anomaly has not 
changed much. The resistivity of the reference-model anomaly was 25 Ωm. The maximum 
value obtained for the inverted anomaly is 11 Ωm.  
 The inversion model in the presented example has dimensions 18km x 10km x 3km 
and grid cells of size 150m x 150m x 150 m. The forward modelling was carried out on 
models of approximate size 10km x 10km x 3km. For the presented inversion results, iteration 
30 was reached after four hours.  
 
Conclusions 
We have presented calculation of the gradient of the misfit functional for 3D inversion of 
marine CSEM data based on our fast FDTD algorithm, and showed that it is well-behaved for 
a synthetic-data example. One benefit of using a time-domain approach is that fields for 
several frequencies are obtained from one forward modelling thus saving valuable 
computational resources when inverting a large number of receivers.  
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Fig. 1:  The reference model used to generate the “observed data” used in the gradient 
computation. The red spheres indicate the receiver positions. The horizontal lines mark depths 
750m (seafloor), 1800m (top edge of anomaly), and 2100m (deep edge of anomaly). 
 

  (a)  

  (b) 
Fig. 2:  The misfit gradient for a model having a 10-Ωm anomaly co-located with the 
anomaly in the reference model.(a):Gradient from the first receiver. (b): Stacked gradients 
from all receivers.  Red: large, positive values, Green:  small positive values, Light-blue: 
small negative values, Dark-blue: large negative values. 
 

 
Fig. 3:  As Fig. 2, but with a 50-Ωm anomaly. 
 
Iteration 0: 

  
Iteration 10: 

  
Iteration 30: 

  
Iteration80: 

  
Fig. 4:The model(left) and resulting misfit gradient(right) for some iterations in the inversion. 
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