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Summary 
Electrical anisotropy of steeply-dipping sedimentary rock formations can have a significant effect on marine CSEM 
data. We demonstrate how this TTI anisotropy can be taken into account in a 3D CSEM inversion, and compare 
VTI and TTI inversion results for a synthetic model and a CSEM field data set acquired over steeply-dipping 
geology. The results show that VTI inversion of CSEM data is inadequate in anisotropic, steeply-dipping geology, 
leading to spurious resistivity anomalies, whereas the TTI inversion produces geologically sound resistivity models 
with a better data fit. 



Introduction

Electrical anisotropy of sedimentary rocks can be significant, in particularin shale formations (Ellis
et al., 2010). The intrinsic anisotropy of such shale formations has been shown by Clavaud (2008) to be
mainly due to compaction, and is therefore expected to be transversely isotropic. Controlled source elec-
tromagnetic (CSEM) data, acquired using a horizontal electric dipole, is sensitive to electrical anisotropy,
since both vertical and horizontal electric currents are induced in the subsurface. It is therefore impor-
tant to take anisotropy properly into account when imaging and interpreting such data (Mohamad et al.,
2010).

Numerous publications have discussed the impact of vertical transverselyisotropic (VTI) anisotropy on
marine CSEM data, using both forward modeling (Lu and Xia, 2007) and inversion (Newman et al.,
2010). This VTI assumption is suitable for sedimentary rock formations with approximately horizontal
bedding. For dipping formations, however, the additional effect of the tilted transversely isotropic (TTI)
formation can have a significant impact on marine CSEM data, as shown by Davydycheva and Frenkel
(2013). In this paper, we show how TTI anisotropy can be included in a 3D inversion of marine CSEM
data and compare VTI and TTI imaging results for a synthetic model and a CSEM field data set acquired
over steeply dipping geology.

Method

TTI forward modeling of CSEM data

The electric and magnetic fields comprising CSEM data are governed by Maxwell’s equations in the
quasi-static limit

∇×E =−µ0
∂H
∂ t

, ∇×H = ΣE+J, (1)

whereE and H are the electric and magnetic field vectors, respectively,µ0 is the vacuum magnetic
permeability,J is the source current density andΣ is the conductivity tensor of the medium. In the
VTI approximation, the conductivity tensor is diagonal in a cartesian coordinate system aligned with
the vertical and horizontal directions, with the two diagonal components corresponding to the horizontal
directions having the same valueσh, and the diagonal component corresponding to the vertical direction
denotedσv. If the bedding of the subsurface is not horizontal, the conductivity tensor is no longer
diagonal, but is instead given by

Σ = RT





σp
σp

σn



R (2)

whereσp and σn are the bed-parallel and bed-normal components of the conductivity tensor Σ in a
coordinate system aligned with the formation bedding. The rotation matrixR is given by

R =





cosα cosβ sinα cosβ −sinβ
−sinα cosα 0

cosα sinβ sinα sinβ cosβ



 , (3)

where the two Euler anglesα andβ measure the azimuth and dip of the formation, respectively.

We numerically solve Maxwell’s equations by a finite-difference time-domain method, using a Lebedev
grid to handle the TTI anisotropic medium. To obtain an efficient algorithm, the problem is first trans-
formed from the actual quasi-static domain, in which conduction currents dominate, to a fictitious wave
domain where displacement currents dominate (Maaø, 2007).

3D TTI inversion of CSEM data

We formulate the CSEM inverse problem as a nonlinear least squares problem, with a cost function
given by

E(m) = Ed(m)+λEr(m), (4)
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wherem is a vector of model parameters(lnσn, lnσp,α ,β ) for each model cell,Ed is the data misfit
cost function,Er is the regularization cost function andλ is a trade-off parameter between data misfit
and regularization. The data misfit is the least squares cost function

Ed(m) =
1

Nd

(

dobs −dsyn(m)
)†

WT
d Wd

(

dobs −dsyn(m)
)

, (5)

whereNd is the number of data points,dobs is a vector of frequency-domain CSEM data anddsyn the
corresponding vector of synthetic data for the model given bym. The diagonal matrixWd is a data
weighting matrix, whose diagonal elements are the inverse standard deviations for the observed data.
The data standard deviations have a contribution from the ambient noise, which is independent of the
CSEM signal, and a contribution from uncertainty in the acquisition parameters, which is approximately
proportional to the CSEM signal amplitude (Mittet and Morten, 2012).

The regularization cost functionEr is a discretized version of the functional

εr(m) =
1
V

∫

∣

∣A∇′ (m−map)
∣

∣

2
dV =

1
V

∫

|AR∇(m−map)|2dV, (6)

whereV is the volume of the model domain,∇′m = R∇m is the gradient of the modelm with respect to
the local bedding-aligned coordinate system andmap is an a priori model, which is typically chosen to be
the initial model in the inversion. Using the local bedding-aligned coordinate system rather than the or-
dinary model coordinate system is more appropriate in steeply-dipping formations, since the smoothing
effect of the regularization will tend to follow the dipping formation better. The3×3 diagonal matrixA
contains weights for each of the three spatial derivatives ofm. The diagonal elements are

A11 = A22 = aT , A33 = aN (7)

whereaT is the weight for the transverse (x′, y′) spatial derivatives andaN is the weight for the normal
(z′) spatial derivative. For sedimentary rock formations, we chooseaT >> aN , since we expect greater
variation of conductivity in the direction normal to the bedding compared to directions parallel to the
bedding.

The total cost function given in equation (4) is minimized using the L-BFGS-B algorithm by Zhu et al.
(1997). This algorithm requires only the gradient of the cost function, which is calculated using the
adjoint state method (Støren et al., 2008).

Results

Synthetic anticline model

We first apply our inversion algorithm to a synthetic CSEM data set. The synthetic model, shown in
Figure 1, is a simple 2D TTI anisotropic anticline model with anisotropy ratioσp/σn ≈ 2 and with a
small resistive anomaly of 50Ωm at the crest of the structure. The synthetic CSEM survey consists
of 3 lines of receivers with a line separation of 1 km, each with 19 ocean bottom receivers with 1 km
separation, recording the horizontal electric field components. The source is a horizontal electric dipole
towed along the 3 receiver lines and with 2 additional azimuth lines on each sideof the receiver grid for a
total of 7 towlines. The source separation along each line is 100 m. The data consisted of the horizontal
electric field components at 3 frequencies of 0.25 Hz, 0.5 Hz and 1 Hz with source-receiver offset up
to 10 km. The synthetic data was contaminated by 1% Gaussian multiplicative noise and additive noise
with a standard deviation of 10−16 V/Am2.

The result of our TTI inversion compared to a VTI inversion, in which the azimuth and dip angles are set
to zero, is shown in Figure 2. The TTI inversion produces a clear anomalyat the approximate position
of the reservoir. The VTI inversion produces a weaker anomaly at the reservoir location, and in addition
produces resistivity artifacts on the flanks of the anticline, where the dip is highest. The TTI inversion
converged to an RMS data misfit of 0.82, while the VTI inversion convergedto an RMS data misfit of
0.9. Both inversions thus produced a good fit to the data.
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Figure 1 Normal resistivity component (left) and dip angle (right) of the synthetic model. The target
resistivity is 50 ohm-m. and the yellow triangles indicate receiver positions along the center towline.

Figure 2 Normal/vertical resistivity component for a TTI (left) and VTI (right) inversion of the synthetic
data set from the model shown in Figure 1.

Real data example

We next apply our inversion algorithm to a field data set from the Gulf of Mexico. The survey consisted
of 184 receivers, with a spacing of 1.5 km, and 24 towlines, and we included the horizontal electric field
components at frequencies of 0.15625 Hz, 0.46875 Hz and 0.78125 Hz for source-receiver offsets up to
13 km in the inversion. The initial model, shown in Figure 3, was constructed from an increasing resis-
tivity gradient that approximately follows the main features of the stratigraphy. For the TTI inversion,
the initial values for the dip and azimuth angles were estimated by interpolating the dip and azimuth
of the main horizons identified from seismic data, and varied with dip values up to30 - 50 degrees on
the flanks of the anticline. The inversion was free to change the angles, but only minor changes of a
few degrees were produced by the inversion. The final inverted conductivity models are also shown in
Figure 3 for the VTI and TTI inversion superimposed on PSDM seismic. There are clear differences
between the VTI and TTI results, with the TTI inversion result showing an increased resistivity in a
layer following the main stratigraphic trends. The VTI inversion result shows resistive anomalies that
do not seem to match the stratigraphy and are thus most likely artifacts causedby the VTI anisotropy
constraint. Futhermore, the TTI inversion converged to an RMS data misfit of 1.26, while the VTI in-
version converged to an RMS data misfit of 2.13. The TTI inversion resultthus has a significantly better
data fit than the VTI inversion result in addition to being a more geologically meaningful model.

Conclusions

We have implemented a 3D inversion for CSEM data that takes TTI anisotropy fully into account. By
comparing VTI and TTI inversion of a TTI synthetic model, we showed that the image produced by the
VTI inversion contains spurious artifacts due to the inadequate descriptionof the anisotropy. Applying
our algorithm to a 3D CSEM data set acquired in the Gulf of Mexico over steeply-dipping geology, we
found that the TTI inversion converged to a better data fit and produceda more geologically meaningful
conductivity model compared to a VTI inversion.
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Figure 3 Resistivity components of the start model (left), VTI inversion result (middle) and TTI inversion
result (right). Top row shows the normal resistivity component, bottom row shows the parallel resistivity
component.

permission to publish the results.

References

Clavaud, J.B. [2008] Intrinsic Electrical Anisotropy of Shale: The Effect of Compaction.Petrophysics,
49(3), 243–260.

Davydycheva, S. and Frenkel, M.A. [2013] The impact of 3D tilted resistivity anisotropy on marine
CSEM measurements.The Leading Edge, 32(11), 1374–1381.

Ellis, M., Sinha, M. and Parr, R. [2010] Role of fine-scale layering and grain alignment in the electrical
anisotropy of marine sediments.First Break, 28(9), 49–57.

Lu, X. and Xia, C. [2007] Understanding anisotropy in marine CSEM data.In: SEG Technical Program
Expanded Abstracts. SEG, 633–637.

Maaø, F.A. [2007] Fast finite-difference time-domain modeling for marine-subsurface electromagnetic
problems.Geophysics, 72(2), A19–A23.

Mittet, R. and Morten, J.P. [2012] Detection and imaging sensitivity of the marineCSEM method.
Geophysics, 77(6), E411–E425.

Mohamad, S.A., Lorenz, L., Hoong, L.T., Wei, T.K., Chandola, S.K., Saadah, N. and Nazihah, F. [2010]
A practical example why anisotropy matters. A CSEM case study from South East Asia. In:SEG
Technical Program Expanded Abstracts. SEG, 696–700.

Newman, G.A., Commer, M. and Carazzone, J.J. [2010] Imaging CSEM data inthe presence of electrical
anisotropy.Geophysics, 75(2), F51–F61.

Støren, T., Zach, J.J. and Maaø, F.A. [2008] Gradient calculations for3D inversion of CSEM data using
a fast finite-difference time-domain modelling code. In:70th EAGE Conference & Exhibition. EAGE,
P194.

Zhu, C., Byrd, R.H., Lu, P. and Nocedal, J. [1997] Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization.ACM Transactions on Mathematical Software (TOMS),
23(4), 550–560.

80th EAGE Conference & Exhibition 2018
11–14 June 2018, Copenhagen, Denmark


