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High-order finite-difference simulations of marine CSEM surveys
using a correspondence principle for wave and diffusion fields

Rune Mittet’

ABSTRACT

The computer time required to solve a typical 3D marine
controlled-source electromagnetic surveying (CSEM) simu-
lation can be reduced by more than one order of magnitude by
transforming low-frequency Maxwell equations in the quasi-
static or diffusive limit to a hyperbolic set of partial differen-
tial equations that give a representation of electromagnetic
fields in a fictitious wave domain. The dispersion and stabili-
ty analysis can be made equivalent to that of other types of
wave simulation problems such as seismic acoustic and elas-
tic modeling. Second-order to eighth-order spatial derivative
operators are implemented for flexibility. Fourth-order and
sixth-order methods are the most numerically efficient im-
plementations for this particular scheme. An implementation
with high-order operators requires that both electric and mag-
netic fields are extrapolated simultaneously into the air layer.
The stability condition given for high-order staggered-deriv-
ative operators here should be equally valid for seismic-wave
simulation. The bandwidth of recovered fields in the diffu-
sive domain is independent of the bandwidth of the fields in
the fictitious wave domain. The fields in the fictitious wave
domain do not represent observable fields. Propagation paths
and interaction/reflection amplitudes are not altered by the
transform from the fictitious wave domain to the diffusive
frequency domain; however, the transform contains an expo-
nential decay factor that damps down late arrivals in the ficti-
tious wave domain. The propagation paths that contribute
most to the diffusive domain fields are airwave (shallow wa-
ter) plus typically postcritical events such as refracted and
guided waves. The transform from the diffusive frequency
domain to the fictitious wave domain is an ill-posed problem.
The transform is nonunique. This gives a large degree of free-
dom in postulating temporal waveforms for boundary condi-
tions in the fictitious wave domain that reproduce correct dif-
fusive frequency-domain fields.

INTRODUCTION

Marine controlled-source electromagnetic (CSEM) surveying is
now an established technique for hydrocarbon exploration (Eidesmo
et al., 2002; Ellingsrud et al., 2002; Srnka et al., 2006). Marine
CSEM methods use an electric dipole transmitter to probe the sub-
surface. The technique has proven particularly useful for detecting
thin, highly resistive layers typical to hydrocarbon reservoirs. Three-
dimensional modeling plays an important role in marine CSEM both
for survey design and inversion of observed data. These two areas
have in common the necessity for a large number of 3D simulations.
Proper survey design requires modeling of each receiver location for
amultitude of frequencies and subsurface scenarios. It is not uncom-
mon to analyze 10 or more frequencies in the range 0.1 Hz to 3—
5 Hzin the pre-survey study.

Atime-domain modeling scheme can compute the electromagnet-
ic fields for these frequencies in one run whereas a frequency-do-
main scheme must model the field for each frequency in separate
runs. Reciprocity can be used to reduce the modeling time signifi-
cantly. The source location in the modeling operation is then at the
true receiver location and the modeled data is recorded at the true
source positions. The simulation of each electric or magnetic com-
ponent requires a separate modeling run because reciprocity dictates
different electric or magnetic dipole source functions for these com-
ponents. Thus, approximately 100 3D modeling operations for a line
layout of 25-30 receivers could be required, even if all relevant fre-
quencies for a given receiver and subsurface realization can be ex-
tracted from one modeling operation. Two to four times more receiv-
ers must be analyzed for a small 3D data set. Three-dimensional in-
version is several orders of magnitude more computer intensive.

Marine CSEM is a low-frequency method. This implies that dis-
placement currents are negligible and that the analysis of the experi-
ment can be carried out in the diffusive or quasi-static limit. It is well
established that the finite-difference time-domain (FDTD) solution
of the Maxwell equations in the purely diffusive limit is time con-
suming, mainly resulting from the fact that the stability condition
dictates a very small time step (Oristaglio and Hohmann, 1984;
Wang and Hohmann, 1993). Both Oristaglio and Hohmann (1984)

Manuscript received by the Editor 31 March 2009; revised manuscript received 22 June 2009; published online 2 February 2010.

'EMGS AS, Trondheim, Norway. E-mail: rm@emgs.com.
©2010 Society of Exploration Geophysicists. All rights reserved.

F33

Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



F34

and Wang and Hohmann (1993) observe that the computer time can
be reduced by introducing a small wavelike contribution in the solu-
tion by the DuFort-Frankel method. Maag (2007) proposes a trans-
formation method that reduces CPU time by a factor of 40 compared
to a fixed time-step DuFort-Frankel-based scheme and a factor of 10
compared to a variable time-step DuFort-Frankel-based scheme.
The method proposed by Maag (2007) is related closely to the FDTD
method introduced by Lee et al. (1989) and more formally discussed
by de Hoop (1996) as a correspondence principle for time-domain
electromagnetic wave and diffusion fields. The potential benefit of
these transform methods is that they can reduce CPU time for 3D
simulations using finite-difference or finite-element techniques.

The focus of this paper is on 3D FDTD simulations of the Max-
well equations for marine CSEM exploration but some of the results
might carry over to other finite-difference applications. As men-
tioned, a key goal in 3D FDTD simulations is to have a numerically
cost-effective scheme. To achieve this for the Maxwell equations, it
turns out that time integration is the critical factor. The solution must
be stable, which puts constraints on the maximum allowed time step
in an explicit scheme. If the term giving rise to the displacement cur-
rents is included in the solution then the highest propagation velocity
will be the velocity of light. A very small time step is then required to
satisfy Courant-Friedrichs-Lewy (CFL) or von Neumann stability
conditions.

The term giving rise to the displacement current can be neglected
for low-frequency field propagation in a conductive medium. This
gives solutions to the Maxwell equations in the quasi-static or diffu-
sive limit that are sufficiently accurate for marine CSEM applica-
tions. However, the problem of a small time step remains. The Max-
well equations in the diffusive limit have solutions on very different
timescales. A system of partial differential equations can be consid-
ered stiff if this is the case. The straightforward explicit numerical
integration of a stiff system of partial differential equations requires
avery fine time step.

The time integration of the Maxwell equations is discussed thor-
oughly in Oristaglio and Hohmann (1984). They propose to use the
DuFort-Frankel method, adding a hyperbolic term to the diffusive
Maxwell equations. This gives a damped wave equation that is un-
conditionally stable with the upper time-step limit given by the clas-
sic CFL condition. The DuFort-Frankel method must be used with
care because the wavelike solutions must be kept much smaller than
the diffusive solutions. This limits the size of the time step as smaller
than the time step dictated by the stability condition.

A modified DuFort-Frankel method was introduced by Wang and
Hohmann (1993), in which the term giving rise to the displacement
current was kept for the Maxwell equations. The dielectric permit-
tivity was set to 2700 times the vacuum value, effectively reducing
the velocity of light and allowing for an increased time step. Howev-
er, the fictitious displacement currents must be kept sufficiently
small to prevent them from dominating the diffusive EM field.
Again, this limits the size of the time step as smaller than the time
step dictated by the stability condition. On the other hand, they state
that with this modified DuFort-Frankel method, the time step can be
increased at later times when the fields are smoothed out. This is a
recipe for an additional reduction in CPU time.

Commer and Newman (2006) take this approach one step further
by realizing that the smooth fields at later times can be represented
properly on a grid coarser than the initial grid. They propose one or
two regridding operations as time increases. This can reduce the
CPU time by a factor of up to five. Carcione (2006) proposes a com-
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pletely different approach to time integration. This method is based
on a Chebychev expansion for time evolution. The scheme has the
numerical accuracy of order machine precision and the stability con-
dition allows for large time steps. Each time step is more costly to
calculate than for a low-order scheme.

The above methods give solutions to the Maxwell equations that
require no postprocessing of the modeling results. Maag (2007) pro-
poses ascheme that uses a larger hyperbolic term than Wang and Ho-
hmann (1993). The time-domain solution can no longer be regarded
as representing real fields. However, he demonstrates that proper
frequency-domain diffusive EM fields can be obtained by a postpro-
cessing step. I show in Appendix A that his method is a step toward
applying the correspondence principle for wave and diffusion fields
(Lee et al., 1989; de Hoop, 1996; Gershenson, 1997) to the diffusive
Maxwell equations.

The diffusive Maxwell equations are transformed to a set of hy-
perbolic Maxwell equations by the application of the correspon-
dence principle. The resulting EM fields become completely wave-
like. However, these fields are not real observable fields. They are
“containers” that hold the necessary information from the simula-
tion process. Proper frequency- and time-domain diffusive solu-
tions can be obtained by postsimulation frequency- and time-
domain transforms. A single transform is sufficient to obtain fre-
quency-domain solutions. A double transform is required to obtain
diffusive time-domain solutions. The potential benefit of transform-
ing the diffusive Maxwell equations to a fictitious wave domain is
reducing CPU time.

First, arelatively large time step can be used because a hyperbolic
set of partial differential equations is solved. The transform that
takes the data from the fictitious wave domain to the frequency do-
main has the property that itis the early arrivals in the fictitious wave
domain that dominates the proper diffusive solution in the frequency
domain. This limits the number of time steps required in the FDTD
simulation and, hence, reduces numerical cost. The combination of a
relatively large time step and a relatively short required simulation
time makes modeling in the fictitious wave domain a numerically ef-
ficient method. Proper diffusive time-domain solutions can be re-
constructed from diffusive frequency-domain solutions.

THEORY

1 prefer to use a formulation similar to de Hoop (1996) for the der-
ivation of the wave-domain equation, with the difference that I use
Fourier transforms instead of Laplace transforms. The derivation in-
troduces an arbitrary circular frequency wo, which corresponds to
the parameter « in de Hoop (1996). This has the effect that the time
axis in the fictitious wave domain is still in units of s and velocity is
in units of m/s. This differs from Lee et al. (1989), who have a time-
like axis, denoted ¢, which is in units of the square root of seconds
(\s) and velocities in units of meters per the square root of seconds
(m/+s). 1 choose a formulation with velocity in units of m/s and time
in units of s because the dispersion and stability analysis becomes
identical to that of a standard FDTD wave simulation. The two repre-
sentations are related in Appendix B and they give the same results
when the wave-domain solutions are transformed to the diffusive
domain. The Green’s functions in the diffusive domain are indepen-
dent of the value of w, for the fictitious wave domain. The effect of
this choice is removed in the transforms from the wave domain to the
diffusive domain.
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I use the following set of Fourier transforms:

T .
flw) = f drf(r)e'”,

0

== f " dof@e . (1)
mJ _

oy

The underlying assumption here is that all sources and fields ana-
lyzed in the following are causal in the sense that they have a zero or
anegligible contribution for z=0.

From the diffusive domain to the fictitious wave domain, the
quasi-static Maxwell equations in the time domain are

—VXH(x,t) + ox)E(x,t) = —J(x,1),
V XE(x,t) + uoH(x,t) = —K(x,1), (2)

where E and H are electric and magnetic vector fields, respectively.
The source terms are electric current density J and magnetic current
density K. The conductivity tensor is o. The FDTD implementation
is TIV anisotropic so that only diagonal elements of the conductivity
tensor differ from zero. The magnetic permeability w is assumed to
be isotropic and constant.

The frequency-domain representation is

—VXH(x,0w)+ ocx)E(x,0w) = —Jx,w),
VXE(x,0) — iouH(x,0) = —K(x,0). (3)

The hyperbolic representation of the Maxwell equations is given
by

—V XH(x,t) + €(x)d,E(x,t) = —J(x,1),
V XE(x,t) + udH(x,t) = —K(x.t), (4)

where € is the dielectric permittivity tensor. Equation 4 has the fol-
lowing frequency-domain representation:

—VXH(x,0w)—ivex)E(x,0) = —J(x,w),
VXE(x,w) —iouH(x,0) = —K(x,w). (5)

In the following, I will use a notation in which parameters and
fields that are particular for the fictitious wave domain are primed. [
start with equation 3 and define a fictitious dielectric permittivity
tensor €’ from the conductivity tensor by

o(x) = 2wpe’ (x) (6)

to obtain
—V XH(x,0) + 2w’ (x)E(x,0) = —J(x,0),
VXE(x,w) — iouH(x,0) = —K(x,w). (7)

The equation for Ampere’s law is multiplied by the term

[—iw
2(1)0 ’ (8)

which gives

-V X |: \/ _le(x,w)} + V—2iwwye' (x)E(x,w)
2(1)0
[—iw
- = 2w0 J(x,(x)),
V X E(x,0) + \r’—2iww0,u,|: \/ _le(x,w)}
2(1)0

= —K(x,w). 9)

First, Iidentify o’ by

c oy A
—iw' =\ —2iow,,

o' =i+ 1)oo,, (10)

which will be used in the transforms of the fields from the temporal
but fictitious wave domain to the frequency domain.

Second, I need to choose a scaling for the electromagnetic fields
and sources. A natural choice is

E'(x,0') = E(x,w),

H (x.0') = “CH(x.w),
2(1)0
T (@) = \| ——J (),
20)0
K (x.0') = K(x.0), (11)

but a multitude of other choices are allowed as long as the relative ra-
tio between fields and sources are preserved. One other example is

-2
E'(xo') =1/ iwwOE(x,w),

H'(x,0') = Hx,w),
J'(x.0") = J(x0),

K'(x,0') =/ _ii)wOK(x,w), (12)

which comes from multiplying both sides of equation 9 by the factor
V= 2wl iw.

By using the definition in equation 10 and the scaling in equation
11, equation 9 becomes

—VXH (x,0') —io'€ X)E'(x,0") = —J'(x,0'),
VXE'(x,0') —io'ul'(x,0") = —K'(x,0"),
(13)

which is the same as equation 5 except for the primes. The time-
domain representation of equation 13 is

—VXH (x,t')+ € (x))E'(x,t') = —J (x,t'),

VXE'(x,t") + wo H (x,t') = —K'(x,t").
(14)
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This is the equation solved by the FDTD approach. The dielectric
permittivity tensor is modified by the application of the correspon-
dence principle. It is clear that equation 14 will no longer give solu-
tions in terms of observable fields. However, the resulting electric
and magnetic fields contain sufficient information to recover the dif-
fusive fields. If I assume the conductivity tensor is isotropic and
equal to o (x) for all components, I find the propagation velocities in
the fictitious wave domain c(x) are

2(1)0

) (15)

clx) =

From the fictitious wave domain to the diffusive
domain

The procedure is to first recover the diffusive frequency-domain
Green’s functions for electric and magnetic sources from the solu-
tions of the hyperbolic problem in the fictitious wave domain. With
these Green’s functions at hand, electric and magnetic fields in the
diffusive frequency-domain resulting from electric or magnetic
sources can be calculated. I change to component notation to demon-
strate this. The frequency-domain electric Green’s function in the i-
direction resulting from an electric source in the n direction G=/
(x,w|x,) can be found by first extracting the electric field and then
the electric current by a complex Fourier integral. From equation 11,
I'have

T
E(x,0) = E(x,0') = f dt'E](x,1")e",  (16)
0

or with equation 10,

T . —
E{(x.0) = f d'E}(x.t")e o e (17)
0

Note that this transform contains an exponential damping factor
applied to the field calculated in the fictitious wave domain. Two ef-
fects are observable immediately: First, early arrivals in the fictitious
wave domain contribute more to the response in the diffusive fre-
quency domain than late arrivals resulting from the damping of late
arrivals from the e Y@ factor. Second, the temporal frequency
content of the product E(x,#')e ~* can be much higher than the
temporal frequency content of E;(x,t') itself. The consequence is
that it is possible to recover high-frequency contributions to E,(x,w)
even if the field in the fictitious wave domain E; (x,') is low frequen-
cy.

I am interested in the Green’s function response so I assume the
spatial part of the source function behaves as a Dirac distribution:

Tt = 86— x )0 (18)

For the temporal part of the electric source contribution,

—2w, r [
J(w) =+ - : f dr' 7)1 (1")e Voo N eeo”  (19)
0

and the diffusive frequency-domain Green’s function is then

Ei(x,0)

G X,0x,) = .

(20)
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The diffusive time-domain representation of the Green’s function
is obtained by a standard Fourier transform:

EJ
G;l(x,t

oN
x,,0) = ﬁ f doG (x,0lx,)e ™. (21)

—wy

The transformation from the fictitious wave domain to the diffu-

sive domain impulse response has two important properties: The
Green’s function in the diffusive domain becomes independent of
the scale parameter w, and, as mentioned, the spectral width or max-
imum frequency that can be recovered in the diffusive domain is in-
dependent of the spectral width or maximum frequency in the ficti-
tious wave domain. The requirements on the wave-domain signal
are that it is causal and that the time integration includes all impor-
tant arrivals. How this can happen is best explained by an example
assuming a whole-space solution. In this case, there exist analytical
solutions in both the time domain and the frequency domain and the
effects of transforming from the fictitious wave domain to the diffu-
sive domain are apparent. This is discussed in Appendix C.

FINITE-DIFFERENCE IMPLEMENTATION

All the parameters and fields discussed in this section are in the
fictitious wave domain; therefore, the prime notation is not used.
This simplifies the notation. The finite-difference scheme is imple-
mented using high-order staggered operators for spatial differentia-
tion. The forward and backward derivative operators in the n-direc-
tion, d,” and 9, , with operator half-length L, are given as

n>?

Ln
a3 0 =+ 3 ) =53 0w +
Xni=1

—¢(m—(—=1D)],

LVl
oyt =)= =S a0t +
Xni=1

= 1) = ¢(m=1D], (22)

where ¢ represents either an electric or a magnetic field component.
The index n can represent any of the three spatial directions and Ax,,
is the step length in the n-direction. The distance in the n-direction is
x, = (m — 1)Ax,. Indices for the two other spatial directions are sup-
pressed for simplicity. The notations 8,,¢(m + %) and a,lzﬂ(m - %)
are used to indicate that the field derivatives are located at staggered
node positions. The dimensionless operator coefficients a, (1) can be
found either from Taylor approximations or an optimization proce-
dure (Holberg, 1987). The FDTD implementation is for operator
half-lengths ranging from one to four. The user is free to choose the
operator type prior to each run.

T use a standard Yee grid (Yee, 1966; Wang and Hohmann, 1993).
Let

x=(i—1)Ax,
y=(— DAy,
z=(k—1)Az, (23)

and
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1
I=i+—,
2
.
_J 2’
1
K=k+ —. (24)
2
Tintroduce
_ ) 2w )
”xx(l’j’k) = sxxl(l’.]’k) = 0 = 2w0pxx(1’.]7k)’
O-XX(I’J’k)
_ 2(,00
(i k) =& (i.J.k) = ———— = 2wop,,(i.].k),
vy »y Vy( i.J.k) yy
1. . 20 ..
7.0j.K) = e (1.j.K) = ——— = 2wp_(i.j.K)
o(i,j.K)

(25)

for the three diagonal components of the conductivity tensor. Here, p
is resistivity. However, the parameter averaging is performed on the
conductivity tensor components. The discretized Maxwell equa-
tions are then

1 _1
H'"2(iJ.K)=H' 2(i,J.K) — At~ [0 EXi.j.K)
— 0. Ey(iJ k)],
1 _1
H'"2(1jK) = H' " 2(1j,K) = Atp [0 EX(1,j.K)
— a0, EXi,j.K)],

B [—

1
H!"2(1J0) = H, 2(LJ0) — Atu™ '[9, E}(i k)

—a, EX1j.k)], (26)

and
1
E" N (1j.k) = E'(Ij,k) + Atnxx(l,j,k)[a)fH:+ 2(1,J,k)

_I_InJrl . ]
- az y Z(I»JaK) ’

Table 1. Staggered derivative operators based on the
Holberg optimization scheme. The operator half-length L
ranges from one to four. The minimum required number of
gridpoints per shortest wavelength, Gy, is given for a
relative group velocity error of 0.003.

1
E} i d k) = Ei.J k) + Amw(i,J,k)[a; H'"2(i.J.K)
— ot 1 ]
—a, H."2(1J.k) |,
1
EINij.K) = EXNij.K) + Arnzz(i,j,K)[a;Hj+ 2(1,j.K)
1
o, H" 2(i,J,K)], (27)

where n represents a time index. The source contributions are added
to the fields at each time step. The spatial part of the source terms are
approximated by band-limited Dirac distributions.

Dispersion

Equation 14 constitutes a wave equation. Thus, results from dis-
persion and stability analysis of wave-propagation problems can be
applied directly. I have chosen an implementation using high-order
optimized difference operators (Holberg, 1987). These operators are
designed to be staggered and are well adapted to be used with a Yee
grid. Spatial dispersion control is part of the design procedure for
these types of operators and the spatial dispersion can be kept at a
controlled and very low level for properly designed operators. The
optimization procedure results in operators that allow for a maxi-
mum coarseness of the simulation grid. In this sense, they are superi-
or to high-order operators based on Taylor expansion. Coefficients
for such operators are given in Table 1. These operators are designed
not to exceed a relative error in group velocity of 0.003 (Holberg,
1987). Operators based on Taylor expansion are shown in Table 2.

Differentiation can be formally written as a convolution integral

a; ¢(x)zfdx’D;(x’)¢(x —x'). (28)

A numerical implementation based on finite differences is ap-
proximate. The error depends on how this integral is truncated. I use
the x-axis for an illustration. Let DY (k,) be the true response of the
operator

ik (k) ~iD, (k) (k). (29)

The difference between k, and D! (k,) will be small for wavenum-
bers up to a critical wavenumber k;. The critical wavenumber will

Table 2. Staggered derivative operators based on Taylor
expansion. The operator half-length L ranges from one to
four. The minimum required number of grid points per
shortest wavelength, Gy, is given for a relative group
velocity error of 0.003. This is a strict criterion compared to
what is usually cited in the literature.

L Giim a a a3 ay L Giim ay a; a3 ay

1 30.3 1.00235 1 40.0 1.00000

2 6.7 1.14443 —0.04886 2 10.4 1.12500 —0.04167

3 4.2 1.20282 —0.08276 0.00950 3 6.6 1.17188 —0.06510 0.00469

4 3.4 1.23041 —0.10313  0.02005 —0.00331 4 5.3 1.19629 —0.07975  0.00957 —0.00070
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depend on the length of the operator, the design method for the oper-
ator, and the criterion used to calculate the discrepancy between de-
sired response k, and actual response D; (k,). The wavenumber re-
sponse of any staggered-difference operator can be written

L

2 20— 1

D} (k) =2, —ax(l)sin< kXAx>. (30)
=1 Ax 2

Equation 30 is independent of the design procedure for the differ-
ence operator and is valid equally for operators based on optimiza-
tion and operators based on Taylor expansion. The performance of a
difference operator can be measured in terms of the parameter Gy,
which is the required number of grid points per shortest wavelength.
If the critical wavenumber k¢ is determined from an inspection of
D/ (k,), then

Ky
Glim = 2_);, (31)
kx

where kY is the Nyquist wavenumber. Observe that Gy, = 2 for a
pseudospectral method where k¢ = kY. This implies that only two
grid points per shortest wavelength are required to sample the field
properly. A second-order scheme in space will have Gy, ~ 10-40,
depending on how much accuracy is required. The sampling density
has an upper limit if the operator type, the maximum frequency, and
the smallest propagation velocity are given

Ax= —Cmin__ (32)
fmaxGlim

Optimized operators will in general have a smaller Gy;,, than oper-
ators based on Taylor expansion. Also, Gy, is reduced with increased
operator length. By comparing the spatial sampling criteria, we ob-
serve that if optimized operators are used then a coarser grid can be
used. The factor goes from 1.33 for L = 1 to 1.56 for L = 4. This is
for each dimension. This implies that for a 3D grid there is a factor of
2.5 to 4 possible to gain in reduced computer time by using opti-
mized derivative operators compared to operators based on a Taylor
expansion. In fact, the reduction in CPU time can be even larger be-
cause the stability criterion allows for a larger time step when the
spatial step lengths increase. This is discussed further at the end of
the next section.

Temporal dispersion must be treated on the same footing as spatial
dispersion. The time step must be sufficiently small to have a stable
calculation but an additional check is required to see if the sampling
is sufficient to avoid temporal dispersion. It is crucial to preserve the
mapping between field and excitation current for the deconvolution
in equation 20 to be sufficiently accurate. There are no propagation/
dispersion effects on the transformed transmitter current in equation
19. However, these effects must be controlled for the wave-domain
electric field in equation 17. The sampling in time must be sufficient-
ly fine to give the same accuracy as the space-domain operations.
This is even more important for the scheme discussed here than for a
standard wave-simulation scheme because temporal dispersion
leads the signal (Dablain, 1986). The early arrivals dominate strong-
ly compared to later arrivals in the transform from fictitious wave
domain to diffusive frequency domain.

Mittet

Stability

Both the electric and magnetic fields are described by a wave
equation for a whole-space. Equation 14 takes the form

V2 (x,t) — ped i p(x,0) =0, (33)

in a source-free region. Here, ¢(x,7) is a component of the electric or
magnetic field and ¢ is one of the diagonal components of €. The
highest propagation velocity ¢c™* determines the time-step limit

1 2(1)0
= [ min min> (34)
Vue o

where ™" is the element of the diagonal conductivity tensor with
the lowest value. I assume that (k,.k,.k.)" is the wavenumber repre-
sentation of the electric or magnetic field in a constant and homoge-
neous medium at time step n. A second-order scheme in time takes
the form (Gazdag, 1981)

[w(kx,ky,kz)”“ } - {2 — Ok kyk)? — 1}
Plhoky k) | L1 0

x{e&(kx,ky,kz)" ]

Uk k) (35)

with

0(ky.kyk.) = c™AD(k,) + DX(k,) + DX(k.), (36)

where ¢™ is the highest propagation velocity to be analyzed. The
necessary condition for stability is that the eigenvalues of the matrix
in equation 35 is less than or equal to 1.0. This puts an upper limit on
0 (k..ky.k.),

0 (kyoky k) <2. (37)

Equation 37 must be valid for all wavenumbers up to the Nyquist
wavenumber. The maximum value of the wavenumber response for
the staggered-difference operators is of importance for equation 37.
This maximum is at the Nyquist wavenumber, which can be deduced
from equation 30:

akxD:— (kx) = 0’

3 Dy (k) <0, (38)
for k, = 7/ Ax. Therefore, I define
LX
CiL) = 2 a,(L)(= DY,
L=1
Ly
Cy(L) = 2 a,(1,)(— )b,
ly =1
L,

CAL) = 2 a(l)(—1)ED, (39)

=1

and
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phax — i

C,(L,),
= L)

2
D= Gy,

2
D' =—C.(L,). 40
= Gl (40)

The resulting stability criterion is

1
SEANDI + (DY) + (DIMP=1. - (41)

Two well-known cases are the CFL limit for an FDTD scheme,
second order in space and based on Taylor operators, and the Fourier
limit for the pseudospectral method. For simplicity, I assume that all
spatial step lengths are equal.

For a second-order scheme with Taylor operators, all operator
half-lengths equal 1, L; = 1, and all operator coefficients equal 1.0,
a,(1) = 1.0. This gives C,(1) = 1.0 from equation 39 and D"
= 2/Ax from equation 40. Equation 41 gives

1
MIA—\3=1, (42)
Ax

which is the CFL limit.
A pseudospectral scheme is exact up to the Nyquist wavenumber;
thus, D™ = 7r/ Ax and equation 41 give the Fourier limit

1 7 —~
MXA——+3=1. 43
¢ Ax 2 A (43)

Operators that are fourth order or higher allow time steps that are
larger than the Fourier limit in equation 43 but smaller than the limit
for the second-order Taylor operator in equation 42. By comparing a
Taylor operator to a given order with an optimized operator to the
same order, I note that the optimized operator will require a some-
what smaller time step if the spatial step lengths are kept the same.
This can be verified by using coefficients from Tables 1 and 2 in
equations 39-41. In the case of a sixth-order operator, the Taylor op-
erator time step can be a factor of 1.04 larger than the time step for an
optimized operator. However, the optimized operator has better dis-
persion properties than the Taylor operator; therefore, my spatial
sampling can be a factor of 1.57 coarser with an optimized operator.
This translates directly to a coarser time step with the same factor
and this outweighs the previous factor of 1.04. The net result is that
the time step can be increased with a factor of approximately 1.5 for
this example.

Boundary conditions

The air-water interface requires special care for a scheme intend-
ed for modeling marine CSEM surveys. The remaining five sides of
the grid are assumed to be absorbing or transparent. The main issue
here is to avoid undesired reflections from the sides that interfere
with the solution. This can be achieved with PML-based implemen-
tation (Kosloff and Kosloff, 1986; Berenger, 1994) or with absorb-
ing boundaries as given by Cerjan et al. (1985). The last method is
used for this scheme.

The air-water interface is implemented at the “first” node in depth,
k = 1, where k is the depth or z-axis index. However, it is clear from
equations 26 and 27 that the horizontal, electric, and magnetic field
components are differentiated in the depth direction. This means the
horizontal, electric, and magnetic fields are required in a buffer
above the first node, k = 1. The field components available at k = 1
are E,, E,, and H.. A second-order scheme with L, = 1 requires H,
and H, above k = 1 — more precisely at K = 0, where K = k + % is
defined in equation 24. This is because the d_ H, and d_ H, opera-
tions are performed in equation 27. The 8" E, and 9. E, operations in
equation 26 do not require the field at ghost nodes above k = 1 for L,
= 1. However, for L, > 1 both electric and magnetic fields are re-
quired above k = 1. The implementation of the air-water interface
for a 3D FDTD scheme is discussed in Wang and Hohmann (1993).
They give a method for obtaining the horizontal magnetic fields at K
= 0. The underlying assumption is that under the quasi-static as-
sumption we have

VXH(x,t)=0 (44)
and
V2H(x,/) = 0 (45)

in the air.

Equation 44 is transformed to the spatial wavenumber domain.
This gives relations so the horizontal magnetic fields can be ex-
pressed as a function of the vertical magnetic field

H (k k 0) ke - SH (kK 0)
Wy y,Z = = _ﬁe *2 7\ Rxs y,Z = s
Vk; + K
ks
H(k,.ky,z=0) = Tt 2 H (ky.ky,z = 0),
Vky + &
(46)
where the dispersion relation k2= —(k; + k;) is obtained from

—ik, - i, A

equation 45. Equation 46 has phase-shift terms e 5 and et
that compensate for the difference in horizontal staggering of the
vertical and horizontal magnetic fields.

Equation 45 implies that the magnetic fields can be extrapolated
vertically in the wavenumber domain by

A [2 . 2Az
Hx<kx,ky,z - f) — e VKOS H (kokyz = 0),

Az LY
Hy(kx,ky,z = - 7) = VRthS H(ky.ky,z=0).

(47)

Extrapolation to ghost nodes above K = 0 — thatis, for K < 0 —
can be performed by repeated application of equation 47 with a
depth step equal to Az:

1
Hx(kx,ky,z = —(m + 5>Az)

22 Az
=e \kx+kymAZHx(kx,ky,z = — ?),
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1
Hy<kx,ky,z = —(m + E)AZ)

[2. 2 A
= e—\k§+k§mAzHy(kx’ky’Z = _7Z> (48)

All that is required after this is a transform back to the space do-
main. However, this is a scheme using high-order operators so the
electric field must also be extrapolated into the air if L, > 1. The
quasi-static approximation for the electric field is (Oristaglio and
Hohmann, 1984),

V2E(x,t) = 0. (49)

Thus, the horizontal electric field components in the air layer can
be obtained by a transform to the wavenumber domain and extrapo-
lation to any node level above z = 0 by

[2. 2
Ex(kmky’z = _mAZ) = e_\’kx-*—kymAzEx(kx’ky,Z = 0)’

E}'(kmky’z = _mAZ) = e_v‘ki-*—k“%mAzEy(kx’k}"Z = O)’
(50)

before a transform back to the space domain.

An implementation of the airwave also requires that the conduc-
tivity at the air-water interface be handled properly. The conductivi-
ty in air is set to zero. Thus, at the node in depth where the air-water
interface is implemented, I assume the effective conductivity is half
that of the water layer.

Simulation times

The transform from the fictitious wave domain to the diffusive
frequency domain contains an exponential decay factor, as can be
seen in equation 17. Thus, early arrivals are weighted heavily com-
pared to late arrivals. This gives an upper limit on how many time
steps (NV,) are required for the simulation in the fictitious wave do-
main. The time integration in equation 17 can be performed while
the FDTD simulation is running. This time integration and, hence,
the FDTD simulation can be stopped when the frequency-domain
result does not change with increasing time at the maximum source-
receiver offset.

A safe estimate of this limit 7™* is given by the time it takes for the
signal that propagates in the seawater over a distance that represents
the largest source-receiver separation R™*. This gives an overesti-
mate of the required simulation time 7™ because in practice the
time it takes for the signal to propagate as a refracted event just be-
low the seabed from the source to a large offset receiver is critical.
This event arrives earlier than the water layer event because the
propagation velocity is much larger.

An alternative approach is to perform an analysis in the diffusive
frequency domain and determine the consequences in the fictitious
wave domain. The average conductivity of seawater is 3.2 S/m. A
fair estimate of the overburden conductivity is 1.0 S/m. If these val-
ues are used for a half-space model, I find that the amplitude of the
refracted field at the seabed is 103 times larger than the direct field in
the water layer at an 8-km source-receiver separation. Thus, the di-
rect wave is negligible at this offset. The implication for the fictitious
wave-domain simulation is that if I let the simulation time be suffi-
ciently large to allow the direct wave to reach a distance from the
source that is 8 km, then all important contributions should be

Mittet

present in the fictitious wave-domain field because later arrivals in
this domain will not survive the transformation to the diffusive fre-
quency domain.

However, for the sake of the arguments to follow, I use the safe or
overestimated value for 7™*, assuming it to be the traveltime for the
field propagating from the source to the receiver in the water layer.
Equation 14 is a wave equation. For the following derivation and for
simplicity, [ assume an isotropic conductivity model. The propaga-
tion velocity ¢(x) is then given by equation 15. For further simplifi-
cation, I assume that all spatial step lengths are equal. Then from
equation41,

A
Af = k— (51)

max’
c

where « is given by the properties of the difference operator so that
the calculation is stable. Further, I assume the two horizontal dimen-
sions of the model are of a similar size. Hence, the number of nodes
in the y-direction (%,) is close to the number of nodes in the
x-direction (N,). It is then reasonable to assume

max = SN Ax, (52)

where S is between 0.5 and 1.0. For the moment, I neglect the dura-
tion of the signal in the fictitious wave domain. This is discussed at
the end of this section. The simulation time is then

R™  SN,Ax
™= cmin = Cmin : (53)
The number of time steps is
T'mdx SNX Cma SNX G_max
N a " e e e Ngmo OY

Thus, N, is independent of the choice of w, but dependent on the
square root of the ratio between highest and lowest conductivity.
This can be explained as follows: If w, increases then the highest
propagation velocity increases with a factor of Vw, and the stability
criterion dictates a reduction in Az with a factor of 1/ \;0 At the
same time, the lowest propagation velocity increases with a factor of
V. This implies that the simulation time can be reduced by a factor
of 1/\w,. These two effects cancel each other out in equation 54.

The number of time steps for this method can be compared with
the number of time steps required for the diffuse scheme described
by Wang and Hohmann (1993). I assume the grid sizes and step
lengths are equal. The number of floating-point operations required
to calculate the curls of the magnetic and electric fields are then the
same if the difference operators are the same. For practical simula-
tions in the fictitious time domain, I arbitrarily choose f, = 1.0 Hz
and w, = 27 f,. l assume that all spatial step lengths are 100 m. The
minimum conductivity is set to 0.02 S/m and the maximum conduc-
tivity to 3.2 S/m. The lowest and highest propagation velocities giv-
en by equation 15 are 1767 m/s and 22,361 m/s, respectively. If L as-
sume that my highest offset is 10 km, then the signal in the seawater
will need 5.7 s to reach this offset at 1767 m/s. I add 1.0 s in simula-
tion time to include the duration of the source time function. If I as-
sume a standard second-order scheme in space, then « = 1/43 in
equation 51. The stability criterion gives a time step of 2.58 ms. The
required number of time steps for the fictitious time-domain simula-
tionis 2597.
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Wang and Hohmann (1993) give a method for varying the time
step in their equation 21:
n O.mint
6

Ax, (55)

Aty = @

where a ranges from 0.1 to 0.2 depending on the accuracy required.
In the example to follow, I use & = 0.15. The typical maximum oft-
set in a marine CSEM survey is 10 km. The duration of the impulse
response in the diffusive domain at a 10-km offset will be approxi-
mately 200 s. Using equation 55, I find that 29,139 time steps are re-
quired. With these numbers, I find the simulation via the fictitious
wave domain is at least ten times more efficient than the diffusive
simulation with variable time steps. However, Maag (2007) finds ac-
curacy problems at source-receiver offsets of 10 km with a displace-
ment current of the magnitude proposed by Wang and Hohmann
(1993). This indicates that the value of « in equation 55 should be re-
duced further. Maag (2007) reports that his method is 40 times more
effective than a diffusive simulation. This comparison is with a
scheme of the type proposed by Wang and Hohmann (1993) but with
an assumed fixed time step for the diffusive simulation.

The scheme proposed here will be at least as effective as the com-
plex frequency scheme proposed in Maag (2007). The reason is that
the complex frequency scheme is partly diffusive and has a diffusive
tail that arrives after the wavelike component. This contribution
must be included in the simulated time-domain data before the trans-
formation to the diffusive domain and will in principle increase the
total simulation time compared to a nondiffusive scheme. This diffu-
sive tail is not present in a scheme based on the correspondence prin-
ciple. However, as shown in Appendix A, by a proper choice of the
complex frequency parameter «, the complex frequency method
and the method presented here, based on the correspondence princi-
ple, can be effectively the same.

The order of the operator or the operator half-length also plays a
key role in determining computational time. Equation 53 is not com-
plete. It is necessary that the electromagnetic fields are causal and
that the integration in equation 17 covers the duration of an arrival. A
source pulse used in a finite-difference scheme must be properly
band-limited to avoid dispersion. If the source time function is a

Gaussian,
()= \/ge_ﬁ(" ", (56)

or a time derivative of the Gaussian, then the duration of the pulse
typically will be 21,. However, 7, can be moved to earlier times if the
frequency content is increased. The frequency content is controlled
by the parameter 3. If  assume the step lengths to be used for the cal-
culation already given, then the maximum allowed frequency would
depend on the operator half-length through the value of G, in Table
L,

Cmin
The source pulse now can be fixed by using equation C-8,
and equation C-9, 7,=~ /ﬁ The total required simulation
time 7™ in equation 53 is modified as 7™** — 7™ + 2f,. Hence, the
total simulation time depends on the operator half-length. The time
step is given by the stability condition in equation 41, which implies
that the time step also depends on the operator half-length. The num-

zfn-Q

max>

ber of numerical operations required to solve the Maxwell equations
for one time step increases linearly with the operator half-length.
However, the rate of GFLOPs also depends on the operator half-
length. Normally, the GFLOP rate or numerical efficiency also in-
creases with operator half-length over some interval. The reason is
that differentiation with a high-order operator has a higher degree of
re-use of data fetched from the main memory compared to differenti-
ation with a low-order operator. The computer architecture and in
particular the size of the secondary cache plays an important role
here. It can also be the case that calculation with operators that are
too long saturates the secondary cache so that numerical efficiency
drops. The above scheme has been tested on several architectures
and the conclusion is that simulation with operator half-lengths of 2
and 3 are the most numerically effective. A second-order scheme L;
= 1 is approximately as efficient as an eighth-order scheme L; = 4 if
the accuracy is required to be the same.

RESULTS

The choice of the scale parameter w is in principle arbitrary. In
the examples to follow, I use w, = 27f, with f, =1 Hz. Typical
propagation velocities in the water layer are then 1700-1800 m/s.
Typical propagation velocities for a relatively conductive formation
are 3000-6000 m/s. The propagation velocity in a 50 Qm resistor is
approximately 22,500 m/s.

All examples are with step lengths of 100 m. This is sufficient for
the examples given here. Davydychevaetal. (2003) give a method to
scale conductivity on a finer grid up to a coarser grid. This method
also gives good results for the present scheme, especially for thin re-
sistors that can be mapped to a coarser grid while preserving the
transverse resistance. An alternative upscale procedure is described
by Commer and Newman (2006).

All examples are done with a transmitter time function in the ficti-
tious wave domain that behaves as the first derivative of a Gaussian,

1) = =28 — 1) %e’ﬁ oWt (s8)

There is great freedom in choosing the form of the transmitter
time function and its frequency content in the fictitious wave domain
as long as it is causal or sufficiently small at the initial time. The ad-
vantage of using the first derivative of a Gaussian is most apparent if
an impulse response is required in the diffusive time domain. The
impulse response in the diffusive time domain has a DC contribution
not equal to zero. Thus, J7(w = 0) # 0 is required in equation 20 to
build the proper spectrum for equation 21. The zero-frequency situa-
tion does not require a special analysis or implementation if the
transmitter time function in the fictitious wave domain is the first de-
rivative of a Gaussian, as can be seen from equation C-11. In this
case, the w term in the denominator of equation 19 is canceled in the
transform. There is an advantage in terms of reduced CPU time to
run with a transmitter waveform in the fictitious wave domain that
has high frequency content, as already mentioned.

The maximum allowed frequency is given by the grid lengths and
the dispersion properties of the derivative operators. The time 7, in
equation 58 can be moved to earlier times because the frequency
content is increased and the waveform is sharpened and can still give
a time function that is approximately causal. If the maximum fre-
quency f,.. is given from the dispersion analysis, I use 8 = 7f2
and ty = 7/ f
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The fictitious wave domain

The first example is of the electromagnetic field in the fictitious
wave domain. The resistivity (conductivity) model is shown in Fig-
ure 1. This example is performed with a grid spacing of 20 m and a
maximum source frequency of 25 Hz. The operator half-length is
four for all three spatial directions.

This problem could have been solved equally well with a 100-m
grid spacing and a maximum frequency of 5 Hz. The high-frequen-
cy content and dense sampling is chosen for illustration purposes: It
helps separate events on the snapshots shown in Figures 2 and 3.
This is a shallow-water case with a water depth of 200 m. The area
above the red line in Figures 2 and 3 is air. The electromagnetic field
is extrapolated into this domain of the model by equations 46—50.
The blue line indicates the seabed, the green line indicates the resis-
tor, and the black line shows the boundary to the lower half-space.
The snapshots in Figures 2 and 3 are for the inline electric field in the
source plane. These are snapshots of the inline electric field still in
the fictitious wave domain and prior to the transform to the diffusive
frequency domain.

The amplitudes in Figure 2 are scaled up so that the airwave is vis-
ible. The airwave is the horizontal event at a depth of 150 m. The ar-
rows indicate the propagation direction. The airwave amplitude is
not large compared to other events in the fictitious wave domain but
it could contribute significantly to the field amplitudes in the diffu-
sive domain resulting from its early arrival. It is apparent from the in-
spection of snapshots for times neighboring the time of the snapshot
in Figure 2 that the airwave is the first arrival at the seabed above a
source-receiver separation of 1 km.

The second arrival at a 1-km offset is the wave refracted along the
seabed. This is the strongest event at 1 km. It also dominates the dif-
fuse contribution at this offset. However, the second arrival at a 2
-km source-receiver separation is the first water-bottom multiple of
the airwave. The contribution of the airwave in the diffusive domain
increases from this offset and outward because the time series is
weighted with the term e~ Voar’ a5 can be seen in equation 17. Late
arrivals in the fictitious wave domain are exponentially damped
compared to early arrivals when diffusive field contributions are ex-
tracted.

Figure 3 displays the inline electric field at a later stage. The am-
plitude scaling is reduced compared to Figure 2. The contribution
from the resistor is clearly visible and the propagation direction is il-
lustrated with the black arrow. The contribution from the resistor
will be the third arrival for source-receiver separations above 2.5 km
except for some high-order water-bottom multiples of the airwave.

0.3125 Ohm-m

Halfspace 2 Ohm-m

Figure 1. The cross-section of the 3D resistivity (conductivity) mod-
el used for the snapshot examples.
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The contribution from the resistor becomes important in the diffu-
sive domain because it arrives relatively early at large offsets in the
fictitious wave domain and has high amplitude.

The transform in equation 17 that takes the data from the fictitious
wave domain to the diffusive domain is a temporal transform. It will
not affect the propagation paths taken by the field in the fictitious
wave domain. Thus, the propagation paths in the fictitious wave do-
main and the real diffusive domain must be the same. This is also the
case for scattering amplitudes. If the medium is inhomogeneous,
there will be scattered events. These scattered events can be de-
scribed by reflection and transmission amplitudes for simple mod-
els. The reflection and transmission coefficients must be the same in
the fictitious wave domain and in the real diffusive domain. Howev-
er, the transform in equation 17 puts a strong weight on early arriv-
als. The early arrivals in the fictitious wave domain at small offsets
(less than 1—2 km) in a typical marine CSEM setting are reflections.
However, for larger offsets the early arrivals at the seabed are domi-
nated by postcritical events such as refracted and guided waves. This
makes sense when comparing to the diffusive fields obtained after
the transform from the fictitious wave domain. The early arrivals in
the fictitious wave domain have taken a high-velocity path, which
equals low conductivity in the fictitious wave domain. Thus, the ob-
served field in the diffusive domain is dominated by the propagation
paths that have experienced the least absorption.

It could be inferred that ray tracing is an option for the simulation
of the electromagnetic fields in a CSEM survey because the fields

Distance (km)

Figure 2. Snapshot of the inline electric field in the source plane at an
early time. The blue line indicates the seabed, the green line indi-
cates the resistor, and the black line shows the boundary to the lower
half-space. The airwave is the horizontal event at a depth of 150 m.
The arrows indicate the propagation direction.

Distance (km)

Depth (km)

3

Figure 3. Snapshot of the inline electric field in the source plane at an
intermediate time. The blue line indicates the seabed, the green line
indicates the resistor, and the black line shows the boundary to the
lower half-space. The contribution from the resistor is the dipping
event just below the black arrow. The arrow indicates the propaga-
tion direction.
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can be simulated by a wave equation. Ray tracing is an option in seis-
mic modeling because a significant contribution to the total recorded
field is precritical reflections. These are fairly easy to implement nu-
merically. However, as stated above, the parts of the electromagnetic
field that are important in a marine CSEM survey are typically post-
critical and guided events. These are more cumbersome to imple-
ment in a ray-tracing code.

The diffusive frequency domain

Most marine CSEM surveys to date have been performed with a
periodic transmitter current. The transmitter waveform typically
will concentrate the output energy on a subset of frequencies — nor-
mally, three to five frequencies. However, a larger span of frequen-
cies usually is analyzed in the survey design; therefore, one of the ad-
vantages of the scheme discussed here is that a multitude of frequen-
cies can be extracted from a single modeling run.

I use a deep-water model and a shallow-water model to demon-
strate the performance of the method for calculating diffusive fields
in the frequency domain. The FDTD fields are compared to refer-
ence fields calculated with a plane-layer method (Lgseth and Ursin,
2007). The deep-water model is shown in Figure 4. The water depth
is 3050 m. The resistor is buried 1000 m below the seabed and has a
thickness of 100 m. The FD grid has a spacing of 100 m in all spatial
directions and the operator half-lengths are three. The source maxi-
mum frequency in the fictitious wave domain is 3 Hz. The frequen-
cies 0.25, 0.75, and 1.25 Hz are extracted from the FDTD calcula-
tion. The amplitude and phase curves of the inline electric field are
shown in Figure 5. The black curves represent the plane-layer meth-
od and the green curves represent the FDTD
method after the transforms in equations 17 and

|
[&]

shallow-water case. I have not identified the source of this differ-
ence. I find the discrepancies in either case to be sufficiently small to
give reliable results for simulation of real data.

Arreal data case is shown in Figure 8. The observed data is from a
recent survey over the Troll West Gas Province described in Gabri-
elsen et al. (2009). The chosen receiver is from the “2D monitoring
line” described there and is situated close to the edge of the reservoir.
The negative offsets in Figure 8 are for the source outside the reser-
voir and the positive offsets are for the source above the reservoir.

0.3125 Ohm-m

Halfspace 2 Ohm-m

Figure 4. The cross-section of the deep-water 3D resistivity (con-
ductivity) model used for comparison with the plane-layer method.

19 are followed by the source deconvolution in
equation 20. The normalized amplitude ratios be-
tween the two methods stay within 1.0 = 0.001
for0.25 Hzand 1.0 = 0.008 for 1.25 Hz. The dis-
crepancy increases moderately with frequency
but good results can be obtained for all frequen-
cies normally used in marine CSEM experiments.
The phase difference stays within 1 degree at
0.25 Hz and within4 degrees at 1.25 Hz. A phase

Log amplitude (V/Am?)
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difference A ¢ (in radians) can be equated with an
angular frequency 27 f times a time difference
A7 so that A¢ =27 fA 7. If this is done for the
phase curves shown in Figure 5, then this time
difference is approximately 10 ms for all fre-
quencies. The typical sampling interval used for
CSEM receivers today is 20 ms so this difference is approximately
half the sampling interval.

The shallow-water model is shown in Figure 6. The step lengths,
operator half-lengths, and transmitter maximum frequency are as for
the deep-water case. The amplitude and phase curves for the inline
electric field are shown in Figure 7. The black curves represent the
plane-layer method and the green curves represent the FDTD meth-
od. The normalized amplitude ratios between the two methods stay
within 1.0 + 0.03 for all frequencies. The phase difference stays
within 0.2 degrees for 0.25 Hz and within 1 degree at 1.25 Hz.
Thus, if I take the plane-layer modeling to give the ground truth,
when I compare the deep-water case with the shallow-water case, I
find that amplitudes are modeled more correctly in the deep-water
case and the phase responses are modeled more accurately in the

Phase (Degrees)
o
Z
I R

0 5 10 -10 -5 0 5
Offset (km) Offset (km)

Figure 5. Inline electric field for 0.25, 0.75, and 1.25 Hz for the deep-water case. The
black lines are for plane-layer modeling. The green lines are for FDTD modeling.

0.3125 Ohm-m

1.5 Ohm-m

50 Ohm-m

Halfspace 2 Ohm-m

Figure 6. The cross-section of the shallow-water 3D resistivity (con-
ductivity) model used for comparison to the plane-layer method.
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Cross-sections of the horizontal and vertical resistivity models are
shown in Figure 9. The position of the receiver is at 14.5 km, which
is approximately 1.5 km outside the reservoir on the left side. The
water depth is approximately 330 m; therefore, there is a substantial
airwave component in the observed data. The horizontal and vertical
conductivity models used for the simulation were derived from full
waveform inversion of the complete line. The inversion method
used was an in-house 2.5D scheme with a different modeling algo-
rithm than the one discussed here. The retrieved conductivity mod-
els have no variations normal to the towline direction. Models with
3D variations cannot be obtained from a single survey line but re-
quire data acquired on a surface grid. This was not available here.
The resistivity in the water layer was 0.29 Qm. The horizontal re-
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sistivity varied from 1.2 Qm in the shallow part of the model to
1.5-1.8 Ombelow 1800 m with a slight increase in resistivity along
the towline (increasing x-coordinate). The vertical resistivity has a
value of 3.5-3.8 Om from the mud line down to 500 m. From
500 m and down to the top reservoir at 1300 m, the vertical resistivi-
ty is 2.2 Om. Below 1800 m, the vertical resistivity is 3.0-3.5 Qm
with an increase along the towline. The simulation was performed
with grid lengths of 100 m in the two horizontal directions and 50 m
in the depth direction. Fourth-order optimized derivative operators
were used for all three spatial dimensions. The fit between the ob-
served and synthetic data is in general very good for both amplitude
and phase. The remaining misfit can very well be caused by the fact
that we do not know the subsurface with sufficient accuracy.

Amplitude Phase The diffusive time domain
. - 200 1.25 Hz The diffusive time-domain response can be
e — calculated if the diffusive frequency-domain re-
§ é 100 o sponse is available over a sufficiently large fre-
E -10 005 E’ Q¥ quency range. The calculation of the diffusive
2 73 by 0 time-domain response does not increase the sim-
g S/S'e @ ulation time in the fictitious wave domain except
> 15 & 100 for the calculation of frequency responses in
S equation 17 and a final FFT that takes the record-
-10 5 0 5 10 720(110 _5 0 5 10 ed data from the diffusive frequency domain to

Offset (km) Offset (km) the diffusive time domain.

Figure 7. Inline electric field for 0.25, 0.75, and 1.25 Hz for the shallow-water case. The
black lines are for plane-layer modeling. The green lines are for FDTD modeling.
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Figure 8. Comparison of real and synthetic inline diffusive electric
fields for a receiver over the Troll West Gas Province. The real data
are in black and the synthetic data are in green. The frequencies are
0.25,0.75,and 1.25 Hz.
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Figure 9. Cross-sections of horizontal and vertical resistivities used for the simulation

of + synthetic data in Figure 8.

The whole-space solution of the impulse re-
sponse of the electric field can be found by a time
differentiation of equation 2.50 in Ward and Ho-
hmann (1987). Figure 10 shows the inline electric
field at an offset of 5000 m in a 1 (dm whole-space as the black
curve. The green curve is the result of an FDTD simulation in the fic-
titious wave domain. The wave-domain inline electric field is trans-
formed according to equations 17, 19, and 20, followed by equation
21. The step lengths used were 100 m, the operator half-lengths
were all equal to two, and the maximum transmitter frequency was
1 Hz.

I have also extracted diffusive time-domain solutions from the
simulations described above for the models in Figures 4 and 6. The
comparison is with the plane-layer method described in Lgseth and
Ursin (2007). For this method, a sufficiently large frequency spec-
trum was calculated and the spectrum was transformed to the time
domain to give the impulse response. The deep-
water response of the inline electric field at a
source-receiver separation of 5000 m is shown in
Figure 11 and the shallow-water response of the
inline electric field at a source-receiver separation
of 9000 m is shown in Figure 12. The fit for the

20 E deep-water case is good for the whole time se-
<
1367 & U . ,
g The main contribution at 5000 m is the re-
0.734 2 sponse from the resistor. There is a small discrep-
0.100 .2 ancy between the two methods at times earlier
-0533 £ than 0.03 s for the shallow-water case but the first
D . .
S peak, which corresponds to the air wave, and the

second peak, which is dominated by the resistor
contribution, are very close in amplitude for both
methods. The two most challenging areas for ex-
tracting the time-domain impulse response in the
diffusive domain from the FDTD simulations in
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the fictitious wave domain are the near-field, where the contributions
from high frequencies dominate, and very large offsets in deep wa-
ter, where the duration of the signal is large. The long duration of the
signal dictates a very fine frequency sampling to avoid wrap-around
effects in the transform from the diffusive frequency domain to the
diffusive time domain.

Back to the fictitious wave domain

The area of application for modeling tools based on the correspon-
dence principle increases if it is possible to transform data from the
diffusive domain to the fictitious wave domain. This opens up the
possibility of performing adjoint state reconstruction of a field from
ameasured boundary condition, a key factor in calculating the gradi-
ent with respect to model parameters (Tarantola, 1984). There is a
large class of inverse methods that requires the gradient from the
present iteration plus potential gradients from previous iterations to
perform the model update, among which are steepest descent, conju-
gate gradient, and BFGS types of schemes. It is already well estab-
lished that the transform from the diffusive frequency domain to the
fictitious wave domain is ill-posed. Equation C-11 combined with
equation C-14 shows there is a nonuniqueness problem related to
this transform. From the combination of these two equations, it is
clear that an infinite multitude of source waveforms in the fictitious
wave domain give the desired solution in the diffusive frequency do-
main. The nonuniqueness is not necessarily a disadvantage. It gives
a large degree of freedom in postulating the source waveform in the
fictitious wave domain. This postulated waveform can be estimated
by an inverse procedure. This topic is also covered by Stgren et al.
(2008) for the complex frequency method of Maag (2007).

Assuming that E%(x,,t) is a boundary condition for the diffusive
field, the adjoint state is according to Tarantola (1984),

T
E(x,0) =f drfa’S(xr)Gf,{(x,T|x,,t)Ef(x,,T)
0

T
= f dr f dS(x,)GE (x.tlx,.7)EB(x,,7), (59)
0

<1013 Source-receiver offset: 5000 m
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Electric field (V/Amz)
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0.1 1 10 100
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Figure 10. Comparison of the inline diffusive electric field in a
whole-space model at a source-receiver offset of 5000 m. The ana-
Iytic resultis in black. The FDTD resultis in green.

where G (x,t|x,,7) is the adjoint state Green’s function and dS(x,)
is a surface integral element over the receiver domain. The frequen-
cy-domain representation is

E(x,0) = JdS(xr)éf,{(x,w|x,)Ef(x,,w), (60)

where the tilde indicates a complex conjugate. If it is possible to ob-
tain a boundary condition E/*(x,,’) in the fictitious wave domain
that fulfills

. Source - receiver offset: 5000 m
x10713

2.0

1.54

1.0

Electric field (V/Am?)

0.54

0.0 T T T
0.01 0.1 1 10 100

Time (s)

Figure 11. Comparison of the inline diffusive electric field in the
deep-water model at a source-receiver offset of 5000 m. The plane-
layer resultis in black. The FDTD resultis in green.

N Source -receiver offset: 9000 m
x10713

1.0

0.5

Electric field (V/Am?)

0.0 . T :
0.01 0.1 : | 10 100
Time (s)

Figure 12. Comparison of the inline diffusive electric field in the
shallow-water model at a source-receiver offset of 9000 m. The
plane-layer resultis in black. The FDTD resultis in green.
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T

El(x,0) = f di'E)P(x.t")e = Voo ehow(61)

0

then the adjoint state E;(x,t') in this domain is

T
Ei(x,t) =f dT’fdS(x,)é,QfJ(x,t’|x,,7')E,'LB(x,,T’),
0

(62)

where G} (x,'| x,,7') is the adjoint state Green’s function in the fic-
titious wave domain. The relation between this Green’s function and
the adjoint state Green’s function in the diffusive domain can be de-

rived from equations 1720, assuming thatJ!"(¢') = §(¢' — 7') and

T
~1EJ —Vowgt' iNoot’
f dl‘,G]Ln (x,t’|x,,7")e Voot el\“’“’of

0
/20) =~ ot iJoon
__OGEHJ(X,(OLX',,)E_waOT/eleon/_ (63)
110}

The transform of the field in equation 62 gives the field E,(x,w),
which is related to the desired field in equation 60 by

T
Ek(x,w)=f dt’E,Q(x,t’)e_“wwotlei“wwot/
0

T T
f dr’ f dr’ J dS(x,)G/E (x,t'|x,,7")
0 0

B —Joont' ivoont'
XE,: (x,,T’)e ooyt ez\wwot

2 —
N J dS(x,) G (x wlx,) EX (x,.0)
LW
2
\ TR (o).
1w

AsIhave already noted, the transform from the diffusive frequen-
cy domain to the fictitious wave domain is nonunique. This gives a
large degree of freedom in choosing the representation of the time
function in the fictitious wave domain. I propose to use as base func-
tions the second derivative of the Gaussian as given in equation 56:

F([’ — Tm) = 1\ @eiﬁm(ﬂ - Tm)z’
a

Figure 13. Comparison of an observed inline elec-

(64)

(65)

Mittet

with a fixed choice of ,, to ensure causality,

%)

a

Bn="7> (66)

Tm

which results from f,,,, = Tlm and B, = T2
The index m runs over the number of frequencies to fit so that the

estimated fictitious wave-domain boundary condition E2(x,,t") be-
comes

EB(x, 1) = XA, 05Tt —1,). (67)
m
The frequency-domain representation is
. — oo, a
ER(x,,w) = DA, 2wwge VOO0 N OC0Tng a3 e 2.
m
(68)

The above function has 2m parameters, A, and 7,,, that must be es-
timated. I minimize the functional €, which measures the difference
between the observed boundary condition £%(x,,w) and the estimate
Ef(x,,w), in the least-squares sense in

€ = 2 (ES(x,.0) — ES(x,.0)*(EX(x,.0) — EX(x,.0)).
(69)

Thave 2m observations because I use m frequencies with E%(x,,w)
complex. An example of a real data set with three frequencies is
shown with black curves in Figure 13. This is the same data set from
Troll as shown in Figure 8. The inline electric field is plotted. The
field E%(x,.t") resulting from equation 67 is shown in Figure 14. The
transformation of Ef (x,,t") to the diffusive frequency domain is
shown as the green curve in Figure 13. The fit between E?(x,,w) and
the estimate Ef(x,,w) is very good. Figure 14 shows one of an infi-
nite number of valid representations for Ef(x,,t’). Each trace in Fig-
ure 14 is normalized to unity. The true-amplitude variation with
source-receiver separation is much larger than what seems apparent
in Figure 14.

tric field (black curve) with the result of first obtain-
ing a representation of the same field in the ficti-
tious wave domain and then taking this field back to
the diffusive frequency domain (green curve).

Log amplitude (V/Am?)
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Offset (km)

Normalized common receiver gather

Figure 14. One possible representation in the fictitious wave domain
of the observed frequency-domain inline electric field in Figure 13.
Each trace is normalized to unity to display the field at large source-
receiver offsets.

CONCLUSION

The correspondence principle for wave and diffusion fields can be
used to implement numerically highly efficient FDTD schemes to
simulate marine CSEM data. The numerical efficiency is resulting
from two factors: The first is that a relatively large time step can be
taken because a hyperbolic system is solved; the second is that rela-
tively short simulation times can be used because the transform from
the fictitious time domain to the diffusive frequency domain quench-
es late arrivals caused by the exponential decay factor. The method is
very well suited for modeling frequency-domain diffusive fields but
also time-domain diffusive fields can be recovered. The scheme here
is with optimized derivative operators. Second-order to eighth-order
operators are implemented for flexibility. For this particular method,
I find the choice of fourth-order and sixth-order operators gives the
most numerically efficient calculations, but this result depends on
computer architecture. An implementation with high-order opera-
tors requires that both electric and magnetic fields be extrapolated si-
multaneously into the air layer to obtain a proper description of the
airwave.

A scaling parameter wy is introduced for convenience to simplify
dispersion and stability analysis. The diffusive domain Green’s ten-
sor is independent of the scaling parameter. I have formulated a sta-
bility condition for high-order staggered-derivative operators that is
also valid for acoustic and elastic seismic wave propagation.

The bandwidth of the recovered fields in the diffusive domain is
independent of the bandwidth of the fields in the fictitious wave do-
main. The fields in the fictitious wave domain do not represent ob-
servable fields but the propagation paths and interaction/reflection
amplitudes are not altered by the transform from the fictitious wave
domain to the diffusive frequency domain, except for the fact that
this transform contains an exponential decay factor that damps down
late arrivals in the fictitious wave domain. This fact can be used to es-
timate the maximum required simulation time in the fictitious wave
domain. The simulation can be terminated safely when the direct
wave in the water reaches the maximum source-receiver separation.

The propagation paths that contribute most to the diffusive do-
main fields are the airwave (in shallow water) plus typically post-
critical events such as refracted and guided events. The transform
from the diffusive frequency domain to fictitious wave domain is an
ill-posed problem. The transform is nonunique. There is a multitude
of field representations in terms of the waveform in the fictitious

wave domain that can give the proper field behavior in the diffusive
domain. This gives alarge degree of freedom in postulating temporal
waveforms for boundary conditions in the fictitious wave domain
that reproduce correct diffusive frequency-domain fields.
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APPENDIX A

THE COMPLEX FREQUENCY METHOD

The method proposed by Maag (2007) can be derived by intro-
ducing a complex frequency in the diffusive domain Maxwell equa-
tions

—VXHx,0w)+ox)Ex w) = —J(x,w),
VXE@x,w) — iouH(x,w) = —K(x,w). (A-1)
Using
iv=io'(l —io a), (A-2)
which is equation 16 in Maag (2007), gives
-V XH(x,0w) + ox)E(x,0) = —J(x,w),
VXE@x,w)—io' (Il —io' a)uH(x,0) = —K(x,0). (A-3)
By
E'(x,0') = E(x,0),
H (x,0')=(1 —io a)H(x,w),
Jx0)=(1—-ioa)J(x,w),
K'(x,0") = K(x,0), (A-4)
equation A-3 becomes
—-VXH x,0') + (1l —io'a)c(x)E'(x,0) = —=J (x,0'),
VXE' (x,0') —io'ul'(x,0) = —K'(x,0"), (A-5)

which are equations 9 and 10 in Maag (2007).
Recall that for the correspondence principle, we have equation
10:

—iw' =\ 2iow. (A-6)
For the complex frequency method, [ introduce

1
a=—, (A_7)
Wy

which by equation A-2 becomes

—io' =\ —i02w, + 03— 0,. (A-8)

For a large value of @ (w,, is small compared to w), I find for the
primed frequency in Maag’s system,
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—iw' = \*"—iwaa, (A-9)

which is similar to equation A-6. This result shows that the complex
frequency method of Maag approaches the correspondence princi-
ple method if a large value of « is used. The methods are, however,
not identical. The complex frequency method will give fields with a
diffusive tail in the fictitious time domain. The implication is that
simulations based on the correspondence principle method can be
terminated at a somewhat earlier time than the complex frequency
method. This can save some computer time in pure forward simula-
tion. However, there is a potential benefit of the complex frequency
method compared to the correspondence principle method: Process-
ing methods such as 3D inversion can depend on adjoint state model-
ing. This requires that a difference field representation in the fre-
quency domain be transformed back to the fictitious time domain. It
is well known that this is an ill-posed problem with correspondence
principle methods. The problems with such a transformation could
be smaller if a diffusive component was kept in the Maxwell equa-
tions, as is the case with the complex frequency method of Maag.
The transform to the fictitious wave domain for this scheme is dis-
cussed by Stgren et al. (2008).

APPENDIX B

INDEPENDENCE OF SCALE PARAMETER

The choice of w, gives a scaling of the time axis in the fictitious
wave domain. The only limitation on w is that it is real and larger
than zero to give positive and real propagation velocities. Practical
choices must ensure the fields have numerical values that preserve
accuracy both in the wave simulation and in the transform from the
fictitious time ¢’ to the frequency domain for diffusive fields. The ¢
domain representation given by Lee et al. (1989) can be obtained by
introducing the timelike parameter g in

q = 2wt . (B-1)
Equation 14 becomes

E'(x,q)
\/2(1)0

—VXH'(x,q) + o(x)d { } = —J'(x.,q),

Vx[ wlng)} + po H' (x,9) = K\T;%)]),
(B-2)
which by
E'(x,

B =L,

H'"(x,q) = H'(x,q),

J'(x.q) = J'(x.9),

K'(x.q) = w;%) (B-3)
gives

—VXH"(x,q) + o(x)),E"(x.q) = —J"(x,9),

Mittet

—K'(x.q).
(B-4)

V XE"(x,q) + uo H"(x,q) =

Equation 17 becomes
Q w LW
E(x,0) = f dqE? (x,q)e” \qu’\/;", (B-5)
0

with Q sufficiently large to include the important arrivals. Equation
18 becomes

dq] "(x,q)e” \/_qe \/;q (B-6)

J,(x,0) =
\ - lw

APPENDIX C

THE TRANSFORM FROM THE FICTITIOUS
WAVE DOMAIN TO THE DIFFUSIVE
FREQUENCY DOMAIN

The diffusive Green’s function in the frequency domain for a
whole-space is well known (Ward and Hohmann, 1987). The
x-component of the Green’s function resulting from an infinitesimal
electric dipole in the x-direction is

. e’“[(xj 1)+<3x_2 1)(;'
lw'u47rr r r? k,r

1
- (kwrf)]’ (€L

where k, = Vipow and r = \x* + y> + z2.

Deriving the wave-domain electric field resulting from an infini-
tesimal electric dipole in the x-direction is straightforward. The vec-
tor potential for the nonconductive case A (x,t) is given in Ward and
Hohmann (1987). The electric field can be expressed as

—V®&(x,t) —9,Ax,1), (C-2)

GEJ(x w) =

E(x,t) =

where @(x,z) is a scalar potential. The Lorenz gauge condition re-
lates the vector and scalar potential,

Ale,t) = — ped, d(x,r) = —éatdf)(x,t). (C-3)

I introduce the source polarization P by J(x,t) = 9,P(x,t) so for
the x-component,

P (x1) = 6(x —x)I'(1). (C-4)

The x-component of the electric field caused by an infinitesimal
electric dipole in the x-direction is then

2 2
E(x.0) = 4—’;{(% - 1>afr(z— ric) + (3% - 1)

c c?
X(;&,F(t —rlc) + ﬁf(t — r/c))]. (C-5)

The above solution is general. An FDTD simulation of equation 4
or equation 14 in a whole-space results in the above electric field.
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Equation C-5 gives the response in the fictitious wave domain if the
propagation velocity is ¢ = v2w,/ no. I use equation C-5 to obtain a
Green’s function in the form of equation 20. Thus, I write the electric
field in equation C-5 as E|(x,#') and perform the transform in equa-
tion 17. I also need the transformed time function for the source in
equation 19.

I assume that the polarization source time function I"(#') is a
Gaussian so that the current source time function is the time deriva-

tive of a Gaussian,
r)= \/EE‘B(’/‘“)’Z- (C-6)
™

The frequency-domain representation of I'(#') in the fictitious
wave domain is
w//2

(0" = e ag e, (C-7)

where I have used a double prime on the angular frequency to mark
that the spectrum is analyzed in the fictitious wave domain. The an-
gular frequency w” is then real. The maximum frequency in the wave
domain is given by . This frequency determines the dispersion
properties of the FDTD simulation in the fictitious wave domain.
Thus, I"(#') will approach a temporal Dirac delta distribution in the
limit 8 — 0. Appropriate choices for finite-difference simulations
where a maximum allowed frequency f,,. is already given as

B= T - (C-8)

A proper choice of #, is required to make the signal close to caus-
al. Alower limit for finite-difference simulations can be

- aa
to—_.
fmax

However, the following derivation is performed without choos-
ing the value of 8. The only assumption is that the pair 8 and 7, give a
causal function in the sense that any integral contributions from #’
= —oxtot’ = 0 canbe neglected.

The frequency transform of the transmitter current (equation 19)
isrequired by equation 20. Thus, I need

(C-9)

T
] . )
f dt'o,T'(t)e'®" = —iw'e'® e " 25 . (C-10)

0

The diffusive domain representation for the transmitter current is

—_— —_— ww(
T — i =20
J (@) = 2wge ™ 000N C0l0e T

(C-11)
For the transform of E(x,#'), I need

r Ly . LW
dt’F(t’ _ r/c)elw — (lo+r/c)e—zﬂ,
0

T wo
J dt'a. Tt — rlc)e®" = —jw' e ot =igg
1’ B s
0
r 2 .o L ]
dt’BI,F(t’ o r/c)e“" o _w/Zezw (t0+r/c)eflﬁ’
0
(C-12)

with the relations

iw )
— =ik,
c
. 2w,
iw'c= ,
ke
2iwwy
2= 2 (C-13)

Note above in equations C-10 and C-12 that as a result of the
transform 8 now appears in a phase factor only. The parameter /3,
which determines the frequency spectrum in the fictitious wave do-
main, does not determine the frequency spectrum in the diffusive do-
main. Thus, the choice of the maximum frequency in the fictitious
wave domain does not influence the maximum frequency in the dif-
fusive domain.

The diffusive domain representation for E is

| (5 1)+ (35 )
le4ﬂ'r r P

- el

X 2wge " VOle@enoe =I5

E(x,0) =E (x,0') =

(C-14)

Observe that J’(w) from equation C-11 is a factor in equation
C-14 so that by equation 20 the Green’s function becomes

E (x,w) etkor (x2 )
GHlx.w)= 2"~ = —jou—1I| = -1
e (%,0) Jf(w) lw'u477r{ r

> .
) RIS | LA N | RS
= kor  (k,r)?

which is equal to equation C-1. One result here is that the transform
from the fictitious time domain to the diffusive frequency domain
gives a result in which the spectrum of the diffusive domain electric
field in equation C-14 is independent of the spectrum of the field in
the fictitious wave domain. The spectrum of the electric field in the
fictitious wave domain is controlled by the parameter 8. This param-
eter gives a phase correction only in equation C-14 and no influence
on the spectrum of the diffusive domain electric field. Further on,
this phase correction is not present for the Green’s function in equa-
tion C-15 because it is removed by the normalization with the source
current. Another result is that dependence on the scale parameter w,
disappears after the deconvolution that is dictated by equation 20.
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