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igh-order finite-difference simulations of marine CSEM surveys
sing a correspondence principle for wave and diffusion fields
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ABSTRACT

The computer time required to solve a typical 3D marine
controlled-source electromagnetic surveying �CSEM� simu-
lation can be reduced by more than one order of magnitude by
transforming low-frequency Maxwell equations in the quasi-
static or diffusive limit to a hyperbolic set of partial differen-
tial equations that give a representation of electromagnetic
fields in a fictitious wave domain. The dispersion and stabili-
ty analysis can be made equivalent to that of other types of
wave simulation problems such as seismic acoustic and elas-
tic modeling. Second-order to eighth-order spatial derivative
operators are implemented for flexibility. Fourth-order and
sixth-order methods are the most numerically efficient im-
plementations for this particular scheme. An implementation
with high-order operators requires that both electric and mag-
netic fields are extrapolated simultaneously into the air layer.
The stability condition given for high-order staggered-deriv-
ative operators here should be equally valid for seismic-wave
simulation. The bandwidth of recovered fields in the diffu-
sive domain is independent of the bandwidth of the fields in
the fictitious wave domain. The fields in the fictitious wave
domain do not represent observable fields. Propagation paths
and interaction/reflection amplitudes are not altered by the
transform from the fictitious wave domain to the diffusive
frequency domain; however, the transform contains an expo-
nential decay factor that damps down late arrivals in the ficti-
tious wave domain. The propagation paths that contribute
most to the diffusive domain fields are airwave �shallow wa-
ter� plus typically postcritical events such as refracted and
guided waves. The transform from the diffusive frequency
domain to the fictitious wave domain is an ill-posed problem.
The transform is nonunique. This gives a large degree of free-
dom in postulating temporal waveforms for boundary condi-
tions in the fictitious wave domain that reproduce correct dif-
fusive frequency-domain fields.

Manuscript received by the Editor 31 March 2009; revised manuscript rece
1EMGSAS, Trondheim, Norway. E-mail: rm@emgs.com.
2010 Society of Exploration Geophysicists.All rights reserved.
F33

Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
INTRODUCTION

Marine controlled-source electromagnetic �CSEM� surveying is
ow an established technique for hydrocarbon exploration �Eidesmo
t al., 2002; Ellingsrud et al., 2002; Srnka et al., 2006�. Marine
SEM methods use an electric dipole transmitter to probe the sub-

urface. The technique has proven particularly useful for detecting
hin, highly resistive layers typical to hydrocarbon reservoirs. Three-
imensional modeling plays an important role in marine CSEM both
or survey design and inversion of observed data. These two areas
ave in common the necessity for a large number of 3D simulations.
roper survey design requires modeling of each receiver location for
multitude of frequencies and subsurface scenarios. It is not uncom-
on to analyze 10 or more frequencies in the range 0.1 Hz to 3–
Hz in the pre-survey study.
Atime-domain modeling scheme can compute the electromagnet-

c fields for these frequencies in one run whereas a frequency-do-
ain scheme must model the field for each frequency in separate

uns. Reciprocity can be used to reduce the modeling time signifi-
antly. The source location in the modeling operation is then at the
rue receiver location and the modeled data is recorded at the true
ource positions. The simulation of each electric or magnetic com-
onent requires a separate modeling run because reciprocity dictates
ifferent electric or magnetic dipole source functions for these com-
onents. Thus, approximately 100 3D modeling operations for a line
ayout of 25–30 receivers could be required, even if all relevant fre-
uencies for a given receiver and subsurface realization can be ex-
racted from one modeling operation. Two to four times more receiv-
rs must be analyzed for a small 3D data set. Three-dimensional in-
ersion is several orders of magnitude more computer intensive.

Marine CSEM is a low-frequency method. This implies that dis-
lacement currents are negligible and that the analysis of the experi-
ent can be carried out in the diffusive or quasi-static limit. It is well

stablished that the finite-difference time-domain �FDTD� solution
f the Maxwell equations in the purely diffusive limit is time con-
uming, mainly resulting from the fact that the stability condition
ictates a very small time step �Oristaglio and Hohmann, 1984;
ang and Hohmann, 1993�. Both Oristaglio and Hohmann �1984�
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nd Wang and Hohmann �1993� observe that the computer time can
e reduced by introducing a small wavelike contribution in the solu-
ion by the DuFort-Frankel method. Maaø �2007� proposes a trans-
ormation method that reduces CPU time by a factor of 40 compared
o a fixed time-step DuFort-Frankel–based scheme and a factor of 10
ompared to a variable time-step DuFort-Frankel–based scheme.
he method proposed by Maaø �2007� is related closely to the FDTD
ethod introduced by Lee et al. �1989� and more formally discussed

y de Hoop �1996� as a correspondence principle for time-domain
lectromagnetic wave and diffusion fields. The potential benefit of
hese transform methods is that they can reduce CPU time for 3D
imulations using finite-difference or finite-element techniques.

The focus of this paper is on 3D FDTD simulations of the Max-
ell equations for marine CSEM exploration but some of the results
ight carry over to other finite-difference applications. As men-

ioned, a key goal in 3D FDTD simulations is to have a numerically
ost-effective scheme. To achieve this for the Maxwell equations, it
urns out that time integration is the critical factor. The solution must
e stable, which puts constraints on the maximum allowed time step
n an explicit scheme. If the term giving rise to the displacement cur-
ents is included in the solution then the highest propagation velocity
ill be the velocity of light.Avery small time step is then required to

atisfy Courant-Friedrichs-Lewy �CFL� or von Neumann stability
onditions.

The term giving rise to the displacement current can be neglected
or low-frequency field propagation in a conductive medium. This
ives solutions to the Maxwell equations in the quasi-static or diffu-
ive limit that are sufficiently accurate for marine CSEM applica-
ions. However, the problem of a small time step remains. The Max-
ell equations in the diffusive limit have solutions on very different

imescales. A system of partial differential equations can be consid-
red stiff if this is the case. The straightforward explicit numerical
ntegration of a stiff system of partial differential equations requires
very fine time step.
The time integration of the Maxwell equations is discussed thor-

ughly in Oristaglio and Hohmann �1984�. They propose to use the
uFort-Frankel method, adding a hyperbolic term to the diffusive
axwell equations. This gives a damped wave equation that is un-

onditionally stable with the upper time-step limit given by the clas-
ic CFL condition. The DuFort-Frankel method must be used with
are because the wavelike solutions must be kept much smaller than
he diffusive solutions. This limits the size of the time step as smaller
han the time step dictated by the stability condition.

A modified DuFort-Frankel method was introduced by Wang and
ohmann �1993�, in which the term giving rise to the displacement

urrent was kept for the Maxwell equations. The dielectric permit-
ivity was set to 2700 times the vacuum value, effectively reducing
he velocity of light and allowing for an increased time step. Howev-
r, the fictitious displacement currents must be kept sufficiently
mall to prevent them from dominating the diffusive EM field.
gain, this limits the size of the time step as smaller than the time

tep dictated by the stability condition. On the other hand, they state
hat with this modified DuFort-Frankel method, the time step can be
ncreased at later times when the fields are smoothed out. This is a
ecipe for an additional reduction in CPU time.

Commer and Newman �2006� take this approach one step further
y realizing that the smooth fields at later times can be represented
roperly on a grid coarser than the initial grid. They propose one or
wo regridding operations as time increases. This can reduce the
PU time by a factor of up to five. Carcione �2006� proposes a com-
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
letely different approach to time integration. This method is based
n a Chebychev expansion for time evolution. The scheme has the
umerical accuracy of order machine precision and the stability con-
ition allows for large time steps. Each time step is more costly to
alculate than for a low-order scheme.

The above methods give solutions to the Maxwell equations that
equire no postprocessing of the modeling results. Maaø �2007� pro-
oses a scheme that uses a larger hyperbolic term than Wang and Ho-
mann �1993�. The time-domain solution can no longer be regarded
s representing real fields. However, he demonstrates that proper
requency-domain diffusive EM fields can be obtained by a postpro-
essing step. I show in Appendix A that his method is a step toward
pplying the correspondence principle for wave and diffusion fields
Lee et al., 1989; de Hoop, 1996; Gershenson, 1997� to the diffusive

axwell equations.
The diffusive Maxwell equations are transformed to a set of hy-

erbolic Maxwell equations by the application of the correspon-
ence principle. The resulting EM fields become completely wave-
ike. However, these fields are not real observable fields. They are
containers” that hold the necessary information from the simula-
ion process. Proper frequency- and time-domain diffusive solu-
ions can be obtained by postsimulation frequency- and time-
omain transforms. A single transform is sufficient to obtain fre-
uency-domain solutions. A double transform is required to obtain
iffusive time-domain solutions. The potential benefit of transform-
ng the diffusive Maxwell equations to a fictitious wave domain is
educing CPU time.

First, a relatively large time step can be used because a hyperbolic
et of partial differential equations is solved. The transform that
akes the data from the fictitious wave domain to the frequency do-

ain has the property that it is the early arrivals in the fictitious wave
omain that dominates the proper diffusive solution in the frequency
omain. This limits the number of time steps required in the FDTD
imulation and, hence, reduces numerical cost. The combination of a
elatively large time step and a relatively short required simulation
ime makes modeling in the fictitious wave domain a numerically ef-
cient method. Proper diffusive time-domain solutions can be re-
onstructed from diffusive frequency-domain solutions.

THEORY

I prefer to use a formulation similar to de Hoop �1996� for the der-
vation of the wave-domain equation, with the difference that I use
ourier transforms instead of Laplace transforms. The derivation in-

roduces an arbitrary circular frequency �0, which corresponds to
he parameter � in de Hoop �1996�. This has the effect that the time
xis in the fictitious wave domain is still in units of s and velocity is
n units of m/s. This differs from Lee et al. �1989�, who have a time-
ike axis, denoted q, which is in units of the square root of seconds
�s� and velocities in units of meters per the square root of seconds
m /�s�. I choose a formulation with velocity in units of m/s and time
n units of s because the dispersion and stability analysis becomes
dentical to that of a standard FDTD wave simulation. The two repre-
entations are related in Appendix B and they give the same results
hen the wave-domain solutions are transformed to the diffusive
omain. The Green’s functions in the diffusive domain are indepen-
ent of the value of �0 for the fictitious wave domain. The effect of
his choice is removed in the transforms from the wave domain to the
iffusive domain.
EG license or copyright; see Terms of Use at http://segdl.org/
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I use the following set of Fourier transforms:

f�����
0

T

dtf�t�ei�t,

f�t��
1

2�
�

��N

�N

d� f���e�i�t. �1�

The underlying assumption here is that all sources and fields ana-
yzed in the following are causal in the sense that they have a zero or
negligible contribution for t�0.
From the diffusive domain to the fictitious wave domain, the

uasi-static Maxwell equations in the time domain are

�� �H�x,t����x�E�x,t���J�x,t�,

� �E�x,t����tH�x,t���K�x,t�, �2�

here E and H are electric and magnetic vector fields, respectively.
he source terms are electric current density J and magnetic current
ensity K. The conductivity tensor is �. The FDTD implementation
s TIV anisotropic so that only diagonal elements of the conductivity
ensor differ from zero. The magnetic permeability � is assumed to
e isotropic and constant.

The frequency-domain representation is

�� �H�x,�����x�E�x,����J�x,��,

� �E�x,��� i��H�x,����K�x,�� . �3�

The hyperbolic representation of the Maxwell equations is given
y

�� �H�x,t����x��tE�x,t���J�x,t�,

� �E�x,t����tH�x,t���K�x,t�, �4�

here � is the dielectric permittivity tensor. Equation 4 has the fol-
owing frequency-domain representation:

�� �H�x,��� i���x�E�x,����J�x,��,

� �E�x,��� i��H�x,����K�x,�� . �5�

In the following, I will use a notation in which parameters and
elds that are particular for the fictitious wave domain are primed. I
tart with equation 3 and define a fictitious dielectric permittivity
ensor �� from the conductivity tensor by

��x��2�0���x� �6�

o obtain

�� �H�x,���2�0���x�E�x,����J�x,��,

� �E�x,��� i��H�x,����K�x,�� . �7�

The equation forAmpère’s law is multiplied by the term

��i�

2�0
, �8�
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
hich gives

�� ����i�

2�0
H�x,������2i��0���x�E�x,��

����i�

2�0
J�x,��,

� �E�x,�����2i��0����i�

2�0
H�x,���

��K�x,�� . �9�

First, I identify �� by

�i�����2i��0,

��� �i�1����0, �10�

hich will be used in the transforms of the fields from the temporal
ut fictitious wave domain to the frequency domain.

Second, I need to choose a scaling for the electromagnetic fields
nd sources.Anatural choice is

E��x,����E�x,��,

H��x,������i�

2�0
H�x,��,

J��x,������i�

2�0
J�x,��,

K��x,����K�x,��, �11�

ut a multitude of other choices are allowed as long as the relative ra-
io between fields and sources are preserved. One other example is

E��x,������2�0

i�
E�x,��,

H��x,����H�x,��,

J��x,����J�x,��,

K��x,������2�0

i�
K�x,��, �12�

hich comes from multiplying both sides of equation 9 by the factor
�2�0 / i�.
By using the definition in equation 10 and the scaling in equation

1, equation 9 becomes

�� �H��x,���� i�����x�E��x,�����J��x,���,

� �E��x,���� i���H��x,�����K��x,���,

�13�

hich is the same as equation 5 except for the primes. The time-
omain representation of equation 13 is

�� �H��x,t������x��t�E��x,t����J��x,t��,

� �E��x,t�����t�H��x,t����K��x,t�� .

�14�
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This is the equation solved by the FDTD approach. The dielectric
ermittivity tensor is modified by the application of the correspon-
ence principle. It is clear that equation 14 will no longer give solu-
ions in terms of observable fields. However, the resulting electric
nd magnetic fields contain sufficient information to recover the dif-
usive fields. If I assume the conductivity tensor is isotropic and
qual to � �x� for all components, I find the propagation velocities in
he fictitious wave domain c�x� are

c�x��� 2�0

�� �x�
. �15�

rom the fictitious wave domain to the diffusive
omain

The procedure is to first recover the diffusive frequency-domain
reen’s functions for electric and magnetic sources from the solu-

ions of the hyperbolic problem in the fictitious wave domain. With
hese Green’s functions at hand, electric and magnetic fields in the
iffusive frequency-domain resulting from electric or magnetic
ources can be calculated. I change to component notation to demon-
trate this. The frequency-domain electric Green’s function in the i-
irection resulting from an electric source in the n direction Gin

EJ

x,� �xs� can be found by first extracting the electric field and then
he electric current by a complex Fourier integral. From equation 11,
have

Ei�x,���Ei��x,�����
0

T

dt�Ei��x,t��ei��t�, �16�

r with equation 10,

Ei�x,����
0

T

dt�Ei��x,t��e����0t�ei���0t�. �17�

Note that this transform contains an exponential damping factor
pplied to the field calculated in the fictitious wave domain. Two ef-
ects are observable immediately: First, early arrivals in the fictitious
ave domain contribute more to the response in the diffusive fre-
uency domain than late arrivals resulting from the damping of late
rrivals from the e����0t� factor. Second, the temporal frequency
ontent of the product Ei��x,t��e����0t� can be much higher than the
emporal frequency content of Ei��x,t�� itself. The consequence is
hat it is possible to recover high-frequency contributions to Ei�x,��
ven if the field in the fictitious wave domain Ei��x,t�� is low frequen-
y.

I am interested in the Green’s function response so I assume the
patial part of the source function behaves as a Dirac distribution:

Jn��xs,t���� �x�xs�Jn�
T�t�� . �18�

For the temporal part of the electric source contribution,

Jn
T������2�0

i�
�

0

T

dt�Jn�
T�t��e����0t�ei���0t�, �19�

nd the diffusive frequency-domain Green’s function is then

Gin
EJ�x,��xs��

Ei�x,��
Jn

T���
. �20�
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The diffusive time-domain representation of the Green’s function
s obtained by a standard Fourier transform:

Gin
EJ�x,t�xs,0��

1

2�
�

��N

�N

d�Gin
EJ�x,��xs�e�i�t. �21�

The transformation from the fictitious wave domain to the diffu-
ive domain impulse response has two important properties: The
reen’s function in the diffusive domain becomes independent of

he scale parameter �0 and, as mentioned, the spectral width or max-
mum frequency that can be recovered in the diffusive domain is in-
ependent of the spectral width or maximum frequency in the ficti-
ious wave domain. The requirements on the wave-domain signal
re that it is causal and that the time integration includes all impor-
ant arrivals. How this can happen is best explained by an example
ssuming a whole-space solution. In this case, there exist analytical
olutions in both the time domain and the frequency domain and the
ffects of transforming from the fictitious wave domain to the diffu-
ive domain are apparent. This is discussed inAppendix C.

FINITE-DIFFERENCE IMPLEMENTATION

All the parameters and fields discussed in this section are in the
ctitious wave domain; therefore, the prime notation is not used.
his simplifies the notation. The finite-difference scheme is imple-
ented using high-order staggered operators for spatial differentia-

ion. The forward and backward derivative operators in the n-direc-
ion, �n

� and �n
�, with operator half-length Ln are given as

�n
�	 �m���n	�m�

1

2
	


1


xn
�
l�1

Ln

�n�l��	 �m� l�

�	 �m� �l�1��,

�n
�	 �m���n	�m�

1

2
	


1


xn
�
l�1

Ln

�n�l��	 �m� �l

�1���	 �m� l�, �22�

here 	 represents either an electric or a magnetic field component.
he index n can represent any of the three spatial directions and 
xn

s the step length in the n-direction. The distance in the n-direction is
n� �m�1�
xn. Indices for the two other spatial directions are sup-
ressed for simplicity. The notations �n	 �m�

1
2� and �n	 �m�

1
2�

re used to indicate that the field derivatives are located at staggered
ode positions. The dimensionless operator coefficients �n�l� can be
ound either from Taylor approximations or an optimization proce-
ure �Holberg, 1987�. The FDTD implementation is for operator
alf-lengths ranging from one to four. The user is free to choose the
perator type prior to each run.

I use a standard Yee grid �Yee, 1966; Wang and Hohmann, 1993�.
et

x� �i�1�
x,

y� �j�1�
y,

z� �k�1�
z, �23�

nd
EG license or copyright; see Terms of Use at http://segdl.org/
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I� i�
1

2
,

J� j�
1

2
,

K�k�
1

2
. �24�

introduce

� xx�I,j,k���xx
�1�I,j,k��

2�0

� xx�I,j,k�
�2�0xx�I,j,k�,

� yy�i,J,k���yy
�1�i,J,k��

2�0

� yy�i,J,k�
�2�0yy�i,J,k�,

� zz�i,j,K���zz
�1�i,j,K��

2�0

� zz�i,j,K�
�2�0zz�i,j,K�

�25�

or the three diagonal components of the conductivity tensor. Here, 
s resistivity. However, the parameter averaging is performed on the
onductivity tensor components. The discretized Maxwell equa-
ions are then

H
x

n�
1
2�i,J,K��H

x

n�
1
2�i,J,K��
t��1�� y

�Ez
n�i,j,K�

��z
�Ey

n�i,J,k�,

H
y

n�
1
2�I,j,K��H

y

n�
1
2�I,j,K��
t��1�� z

�Ex
n�I,j,k�

��x
�Ez

n�i,j,K�,

H
z

n�
1
2�I,J,k��H

z

n�
1
2�I,J,k��
t��1�� x

�Ey
n�i,J,k�

��y
�Ex

n�I,j,k�, �26�

nd

Ex
n�1�I,j,k��Ex

n�I,j,k��
t� xx�I,j,k���y
�H

z

n�
1
2�I,J,k�

��z
�H

y

n�
1
2�I,j,K�,

able 1. Staggered derivative operators based on the
olberg optimization scheme. The operator half-length L

anges from one to four. The minimum required number of
ridpoints per shortest wavelength, Glim, is given for a
elative group velocity error of 0.003.

Glim �1 �2 �3 �4

30.3 1.00235

6.7 1.14443 �0.04886

4.2 1.20282 �0.08276 0.00950

3.4 1.23041 �0.10313 0.02005 �0.00331
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
Ey
n�1�i,J,k��Ey

n�i,J,k��
t� yy�i,J,k���z
�H

x

n�
1
2�i,J,K�

��x
�H

z

n�
1
2�I,J,k�,

Ez
n�1�i,j,K��Ez

n�i,j,K��
t� zz�i,j,K���x
�H

y

n�
1
2�I,j,K�

��y
�H

x

n�
1
2�i,J,K�, �27�

here n represents a time index. The source contributions are added
o the fields at each time step. The spatial part of the source terms are
pproximated by band-limited Dirac distributions.

ispersion

Equation 14 constitutes a wave equation. Thus, results from dis-
ersion and stability analysis of wave-propagation problems can be
pplied directly. I have chosen an implementation using high-order
ptimized difference operators �Holberg, 1987�. These operators are
esigned to be staggered and are well adapted to be used with a Yee
rid. Spatial dispersion control is part of the design procedure for
hese types of operators and the spatial dispersion can be kept at a
ontrolled and very low level for properly designed operators. The
ptimization procedure results in operators that allow for a maxi-
um coarseness of the simulation grid. In this sense, they are superi-

r to high-order operators based on Taylor expansion. Coefficients
or such operators are given in Table 1. These operators are designed
ot to exceed a relative error in group velocity of 0.003 �Holberg,
987�. Operators based on Taylor expansion are shown in Table 2.

Differentiation can be formally written as a convolution integral

� x
�	 �x�
�dx�Dx

��x��	 �x�x�� . �28�

A numerical implementation based on finite differences is ap-
roximate. The error depends on how this integral is truncated. I use
he x-axis for an illustration. Let Dx

��kx� be the true response of the
perator

ikx	 �kx�
 iDx
��kx�	 �kx� . �29�

The difference between kx and Dx
��kx� will be small for wavenum-

ers up to a critical wavenumber kx
c. The critical wavenumber will

able 2. Staggered derivative operators based on Taylor
xpansion. The operator half-length L ranges from one to
our. The minimum required number of grid points per
hortest wavelength, Glim, is given for a relative group
elocity error of 0.003. This is a strict criterion compared to
hat is usually cited in the literature.

Glim �1 �2 �3 �4

40.0 1.00000

10.4 1.12500 �0.04167

6.6 1.17188 �0.06510 0.00469

5.3 1.19629 �0.07975 0.00957 �0.00070
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F38 Mittet
epend on the length of the operator, the design method for the oper-
tor, and the criterion used to calculate the discrepancy between de-
ired response kx and actual response Dx

��kx�. The wavenumber re-
ponse of any staggered-difference operator can be written

Dx
��kx�� �

l�1

L
2


x
�x�l�sin�2l�1

2
kx
x	 . �30�

Equation 30 is independent of the design procedure for the differ-
nce operator and is valid equally for operators based on optimiza-
ion and operators based on Taylor expansion. The performance of a
ifference operator can be measured in terms of the parameter Glim,
hich is the required number of grid points per shortest wavelength.

f the critical wavenumber kx
c is determined from an inspection of

x
��kx�, then

Glim�2
kx

N

kx
c , �31�

here kx
N is the Nyquist wavenumber. Observe that Glim�2 for a

seudospectral method where kx
c�kx

N. This implies that only two
rid points per shortest wavelength are required to sample the field
roperly. A second-order scheme in space will have Glim�10–40,
epending on how much accuracy is required. The sampling density
as an upper limit if the operator type, the maximum frequency, and
he smallest propagation velocity are given


x�
cmin

fmaxGlim
. �32�

Optimized operators will in general have a smaller Glim than oper-
tors based on Taylor expansion.Also, Glim is reduced with increased
perator length. By comparing the spatial sampling criteria, we ob-
erve that if optimized operators are used then a coarser grid can be
sed. The factor goes from 1.33 for L�1 to 1.56 for L�4. This is
or each dimension. This implies that for a 3D grid there is a factor of
.5 to 4 possible to gain in reduced computer time by using opti-
ized derivative operators compared to operators based on a Taylor

xpansion. In fact, the reduction in CPU time can be even larger be-
ause the stability criterion allows for a larger time step when the
patial step lengths increase. This is discussed further at the end of
he next section.

Temporal dispersion must be treated on the same footing as spatial
ispersion. The time step must be sufficiently small to have a stable
alculation but an additional check is required to see if the sampling
s sufficient to avoid temporal dispersion. It is crucial to preserve the

apping between field and excitation current for the deconvolution
n equation 20 to be sufficiently accurate. There are no propagation/
ispersion effects on the transformed transmitter current in equation
9. However, these effects must be controlled for the wave-domain
lectric field in equation 17. The sampling in time must be sufficient-
y fine to give the same accuracy as the space-domain operations.
his is even more important for the scheme discussed here than for a
tandard wave-simulation scheme because temporal dispersion
eads the signal �Dablain, 1986�. The early arrivals dominate strong-
y compared to later arrivals in the transform from fictitious wave
omain to diffusive frequency domain.
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
tability

Both the electric and magnetic fields are described by a wave
quation for a whole-space. Equation 14 takes the form

�2	 �x,t����� t
2	 �x,t��0, �33�

n a source-free region. Here, 	 �x,t� is a component of the electric or
agnetic field and � is one of the diagonal components of �. The

ighest propagation velocity cmax determines the time-step limit

cmax�
1

���min
�� 2�0

�� min, �34�

here � min is the element of the diagonal conductivity tensor with
he lowest value. I assume that 	 �kx,ky,kz�n is the wavenumber repre-
entation of the electric or magnetic field in a constant and homoge-
eous medium at time step n. A second-order scheme in time takes
he form �Gazdag, 1981�

�	 �kx,ky,kz�n�1

	 �kx,ky,kz�n ���2�� �kx,ky,kz�2 �1

1 0
�

��	 �kx,ky,kz�n

	 �kx,ky,kz�n�1�, �35�

ith

� �kx,ky,kz��cmax
t�Dx
2�kx��Dy

2�ky��Dz
2�kz�, �36�

here cmax is the highest propagation velocity to be analyzed. The
ecessary condition for stability is that the eigenvalues of the matrix
n equation 35 is less than or equal to 1.0. This puts an upper limit on
�kx,ky,kz�,

� �kx,ky,kz��2. �37�

Equation 37 must be valid for all wavenumbers up to the Nyquist
avenumber. The maximum value of the wavenumber response for

he staggered-difference operators is of importance for equation 37.
his maximum is at the Nyquist wavenumber, which can be deduced

rom equation 30:

�kx
Dx

��kx��0,

�kx

2 Dx
��kx��0, �38�

or kx�� /
x. Therefore, I define

Cx�Lx�� �
lx�1

Lx

�x�lx���1��lx�1�,

Cy�Ly�� �
ly�1

Ly

�y�ly���1��ly�1�,

Cz�Lz�� �
lz�1

Lz

�z�lz���1��lz�1�, �39�

nd
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FDTD simulation of marine CSEM surveys F39
Dx
max�

2


x
Cx�Lx�,

Dy
max�

2


y
Cy�Ly�,

Dz
max�

2


z
Cz�Lz� . �40�

The resulting stability criterion is

1

2
cmax
t��Dx

max�2� �Dy
max�2� �Dz

max�2�1. �41�

Two well-known cases are the CFL limit for an FDTD scheme,
econd order in space and based on Taylor operators, and the Fourier
imit for the pseudospectral method. For simplicity, I assume that all
patial step lengths are equal.

For a second-order scheme with Taylor operators, all operator
alf-lengths equal 1, Li�1, and all operator coefficients equal 1.0,
i�1��1.0. This gives Ci�1��1.0 from equation 39 and Di

max

2 /
x from equation 40. Equation 41 gives

cmax
t
1


x
�3�1, �42�

hich is the CFL limit.
A pseudospectral scheme is exact up to the Nyquist wavenumber;

hus, Di
max�� /
x and equation 41 give the Fourier limit

cmax
t
1


x

�

2
�3�1. �43�

Operators that are fourth order or higher allow time steps that are
arger than the Fourier limit in equation 43 but smaller than the limit
or the second-order Taylor operator in equation 42. By comparing a
aylor operator to a given order with an optimized operator to the
ame order, I note that the optimized operator will require a some-
hat smaller time step if the spatial step lengths are kept the same.
his can be verified by using coefficients from Tables 1 and 2 in
quations 39–41. In the case of a sixth-order operator, the Taylor op-
rator time step can be a factor of 1.04 larger than the time step for an
ptimized operator. However, the optimized operator has better dis-
ersion properties than the Taylor operator; therefore, my spatial
ampling can be a factor of 1.57 coarser with an optimized operator.
his translates directly to a coarser time step with the same factor
nd this outweighs the previous factor of 1.04. The net result is that
he time step can be increased with a factor of approximately 1.5 for
his example.

oundary conditions

The air-water interface requires special care for a scheme intend-
d for modeling marine CSEM surveys. The remaining five sides of
he grid are assumed to be absorbing or transparent. The main issue
ere is to avoid undesired reflections from the sides that interfere
ith the solution. This can be achieved with PML-based implemen-

ation �Kosloff and Kosloff, 1986; Berenger, 1994� or with absorb-
ng boundaries as given by Cerjan et al. �1985�. The last method is
sed for this scheme.
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
The air-water interface is implemented at the “first” node in depth,
�1, where k is the depth or z-axis index. However, it is clear from
quations 26 and 27 that the horizontal, electric, and magnetic field
omponents are differentiated in the depth direction. This means the
orizontal, electric, and magnetic fields are required in a buffer
bove the first node, k�1. The field components available at k�1
re Ex, Ey, and Hz. A second-order scheme with Lz�1 requires Hx

nd Hy above k�1 — more precisely at K�0, where K�k�
1
2 is

efined in equation 24. This is because the �z
�Hx and �z

�Hy opera-
ions are performed in equation 27. The �z

�Ex and �z
�Ey operations in

quation 26 do not require the field at ghost nodes above k�1 for Lz

1. However, for Lz � 1 both electric and magnetic fields are re-
uired above k�1. The implementation of the air-water interface
or a 3D FDTD scheme is discussed in Wang and Hohmann �1993�.
hey give a method for obtaining the horizontal magnetic fields at K
0. The underlying assumption is that under the quasi-static as-

umption we have

� �H�x,t��0 �44�

nd

�2H�x,t��0 �45�

n the air.
Equation 44 is transformed to the spatial wavenumber domain.

his gives relations so the horizontal magnetic fields can be ex-
ressed as a function of the vertical magnetic field

Hx�kx,ky,z�0���
ikx

�kx
2�ky

2
e�ikx


x
2 Hz�kx,ky,z�0�,

Hy�kx,ky,z�0���
iky

�kx
2�ky

2
e�iky


y
2 Hz�kx,ky,z�0�,

�46�

here the dispersion relation kz
2���kx

2�ky
2� is obtained from

quation 45. Equation 46 has phase-shift terms e�ikx

x
2 and e�iky


y
2

hat compensate for the difference in horizontal staggering of the
ertical and horizontal magnetic fields.

Equation 45 implies that the magnetic fields can be extrapolated
ertically in the wavenumber domain by

Hx�kx,ky,z��

z

2
	�e��kx

2
�ky

2 
z
2 Hx�kx,ky,z�0�,

Hy�kx,ky,z��

z

2
	�e��kx

2
�ky

2 
z
2 Hy�kx,ky,z�0� .

�47�

Extrapolation to ghost nodes above K�0 — that is, for K � 0 —
an be performed by repeated application of equation 47 with a
epth step equal to 
z:

Hx�kx,ky,z���m�
1

2
	
z	

�e��kx
2
�ky

2m
zHx�kx,ky,z��

z

2
	,
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Hy�kx,ky,z���m�
1

2
	
z	

�e��kx
2
�ky

2m
zHy�kx,ky,z��

z

2
	 . �48�

All that is required after this is a transform back to the space do-
ain. However, this is a scheme using high-order operators so the

lectric field must also be extrapolated into the air if Lz � 1. The
uasi-static approximation for the electric field is �Oristaglio and
ohmann, 1984�,

�2E�x,t��0. �49�

Thus, the horizontal electric field components in the air layer can
e obtained by a transform to the wavenumber domain and extrapo-
ation to any node level above z�0 by

Ex�kx,ky,z��m
z��e��kx
2
�ky

2m
zEx�kx,ky,z�0�,

Ey�kx,ky,z��m
z��e��kx
2
�ky

2m
zEy�kx,ky,z�0�,

�50�

efore a transform back to the space domain.
An implementation of the airwave also requires that the conduc-

ivity at the air-water interface be handled properly. The conductivi-
y in air is set to zero. Thus, at the node in depth where the air-water
nterface is implemented, I assume the effective conductivity is half
hat of the water layer.

imulation times

The transform from the fictitious wave domain to the diffusive
requency domain contains an exponential decay factor, as can be
een in equation 17. Thus, early arrivals are weighted heavily com-
ared to late arrivals. This gives an upper limit on how many time
teps �Nt� are required for the simulation in the fictitious wave do-
ain. The time integration in equation 17 can be performed while

he FDTD simulation is running. This time integration and, hence,
he FDTD simulation can be stopped when the frequency-domain
esult does not change with increasing time at the maximum source-
eceiver offset.

Asafe estimate of this limit Tmax is given by the time it takes for the
ignal that propagates in the seawater over a distance that represents
he largest source-receiver separation Rmax. This gives an overesti-
ate of the required simulation time Tmax because in practice the

ime it takes for the signal to propagate as a refracted event just be-
ow the seabed from the source to a large offset receiver is critical.
his event arrives earlier than the water layer event because the
ropagation velocity is much larger.

An alternative approach is to perform an analysis in the diffusive
requency domain and determine the consequences in the fictitious
ave domain. The average conductivity of seawater is 3.2 S/m. A

air estimate of the overburden conductivity is 1.0 S/m. If these val-
es are used for a half-space model, I find that the amplitude of the
efracted field at the seabed is 103 times larger than the direct field in
he water layer at an 8-km source-receiver separation. Thus, the di-
ect wave is negligible at this offset. The implication for the fictitious
ave-domain simulation is that if I let the simulation time be suffi-

iently large to allow the direct wave to reach a distance from the
ource that is 8 km, then all important contributions should be
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
resent in the fictitious wave-domain field because later arrivals in
his domain will not survive the transformation to the diffusive fre-
uency domain.

However, for the sake of the arguments to follow, I use the safe or
verestimated value for Tmax, assuming it to be the traveltime for the
eld propagating from the source to the receiver in the water layer.
quation 14 is a wave equation. For the following derivation and for
implicity, I assume an isotropic conductivity model. The propaga-
ion velocity c�x� is then given by equation 15. For further simplifi-
ation, I assume that all spatial step lengths are equal. Then from
quation 41,


t��

x

cmax, �51�

here � is given by the properties of the difference operator so that
he calculation is stable. Further, I assume the two horizontal dimen-
ions of the model are of a similar size. Hence, the number of nodes
n the y-direction �Ny� is close to the number of nodes in the
-direction �Nx�. It is then reasonable to assume

Rmax�SNx
x, �52�

here S is between 0.5 and 1.0. For the moment, I neglect the dura-
ion of the signal in the fictitious wave domain. This is discussed at
he end of this section. The simulation time is then

Tmax�
Rmax

cmin �
SNx
x

cmin . �53�

he number of time steps is

Nt�
Tmax


t
�

SNx

�

cmax

cmin �
SNx

�
�� max

� min . �54�

Thus, Nt is independent of the choice of �0 but dependent on the
quare root of the ratio between highest and lowest conductivity.
his can be explained as follows: If �0 increases then the highest
ropagation velocity increases with a factor of ��0 and the stability
riterion dictates a reduction in 
t with a factor of 1 /��0. At the
ame time, the lowest propagation velocity increases with a factor of
�0. This implies that the simulation time can be reduced by a factor
f 1 /��0. These two effects cancel each other out in equation 54.
The number of time steps for this method can be compared with

he number of time steps required for the diffuse scheme described
y Wang and Hohmann �1993�. I assume the grid sizes and step
engths are equal. The number of floating-point operations required
o calculate the curls of the magnetic and electric fields are then the
ame if the difference operators are the same. For practical simula-
ions in the fictitious time domain, I arbitrarily choose f0�1.0 Hz
nd �0�2� f0. I assume that all spatial step lengths are 100 m. The
inimum conductivity is set to 0.02 S/m and the maximum conduc-

ivity to 3.2 S/m. The lowest and highest propagation velocities giv-
n by equation 15 are 1767 m /s and 22,361 m/s, respectively. If I as-
ume that my highest offset is 10 km, then the signal in the seawater
ill need 5.7 s to reach this offset at 1767 m/s. I add 1.0 s in simula-

ion time to include the duration of the source time function. If I as-
ume a standard second-order scheme in space, then � �1 /�3 in
quation 51. The stability criterion gives a time step of 2.58 ms. The
equired number of time steps for the fictitious time-domain simula-
ion is 2597.
EG license or copyright; see Terms of Use at http://segdl.org/
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FDTD simulation of marine CSEM surveys F41
Wang and Hohmann �1993� give a method for varying the time
tep in their equation 21:


tmax����� mint

6

x, �55�

here � ranges from 0.1 to 0.2 depending on the accuracy required.
n the example to follow, I use � �0.15. The typical maximum off-
et in a marine CSEM survey is 10 km. The duration of the impulse
esponse in the diffusive domain at a 10-km offset will be approxi-
ately 200 s. Using equation 55, I find that 29,139 time steps are re-

uired. With these numbers, I find the simulation via the fictitious
ave domain is at least ten times more efficient than the diffusive

imulation with variable time steps. However, Maaø �2007� finds ac-
uracy problems at source-receiver offsets of 10 km with a displace-
ent current of the magnitude proposed by Wang and Hohmann

1993�. This indicates that the value of � in equation 55 should be re-
uced further. Maaø �2007� reports that his method is 40 times more
ffective than a diffusive simulation. This comparison is with a
cheme of the type proposed by Wang and Hohmann �1993� but with
n assumed fixed time step for the diffusive simulation.

The scheme proposed here will be at least as effective as the com-
lex frequency scheme proposed in Maaø �2007�. The reason is that
he complex frequency scheme is partly diffusive and has a diffusive
ail that arrives after the wavelike component. This contribution

ust be included in the simulated time-domain data before the trans-
ormation to the diffusive domain and will in principle increase the
otal simulation time compared to a nondiffusive scheme. This diffu-
ive tail is not present in a scheme based on the correspondence prin-
iple. However, as shown in Appendix A, by a proper choice of the
omplex frequency parameter �, the complex frequency method
nd the method presented here, based on the correspondence princi-
le, can be effectively the same.

The order of the operator or the operator half-length also plays a
ey role in determining computational time. Equation 53 is not com-
lete. It is necessary that the electromagnetic fields are causal and
hat the integration in equation 17 covers the duration of an arrival.A
ource pulse used in a finite-difference scheme must be properly
and-limited to avoid dispersion. If the source time function is a
aussian,

� �t�����

�
e�� �t�� t0�2

, �56�

r a time derivative of the Gaussian, then the duration of the pulse
ypically will be 2t0. However, t0 can be moved to earlier times if the
requency content is increased. The frequency content is controlled
y the parameter � . If I assume the step lengths to be used for the cal-
ulation already given, then the maximum allowed frequency would
epend on the operator half-length through the value of Glim in Table
,

fmax�
cmin

Glim
x
. �57�

The source pulse now can be fixed by using equation C-8, �
� fmax

2 , and equation C-9, t0 
 �

fmax
. The total required simulation

ime Tmax in equation 53 is modified as Tmax→Tmax�2t0. Hence, the
otal simulation time depends on the operator half-length. The time
tep is given by the stability condition in equation 41, which implies
hat the time step also depends on the operator half-length. The num-
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
er of numerical operations required to solve the Maxwell equations
or one time step increases linearly with the operator half-length.
owever, the rate of GFLOPs also depends on the operator half-

ength. Normally, the GFLOP rate or numerical efficiency also in-
reases with operator half-length over some interval. The reason is
hat differentiation with a high-order operator has a higher degree of
e-use of data fetched from the main memory compared to differenti-
tion with a low-order operator. The computer architecture and in
articular the size of the secondary cache plays an important role
ere. It can also be the case that calculation with operators that are
oo long saturates the secondary cache so that numerical efficiency
rops. The above scheme has been tested on several architectures
nd the conclusion is that simulation with operator half-lengths of 2
nd 3 are the most numerically effective. A second-order scheme Li

1 is approximately as efficient as an eighth-order scheme Li�4 if
he accuracy is required to be the same.

RESULTS

The choice of the scale parameter �0 is in principle arbitrary. In
he examples to follow, I use �0�2� f0 with f0�1 Hz. Typical
ropagation velocities in the water layer are then 1700–1800 m/s.
ypical propagation velocities for a relatively conductive formation
re 3000–6000 m/s. The propagation velocity in a 50 �m resistor is
pproximately 22,500 m/s.

All examples are with step lengths of 100 m. This is sufficient for
he examples given here. Davydycheva et al. �2003� give a method to
cale conductivity on a finer grid up to a coarser grid. This method
lso gives good results for the present scheme, especially for thin re-
istors that can be mapped to a coarser grid while preserving the
ransverse resistance. An alternative upscale procedure is described
y Commer and Newman �2006�.

All examples are done with a transmitter time function in the ficti-
ious wave domain that behaves as the first derivative of a Gaussian,

Jn�
T�t����2� �t�� t0���

�
e�� �t�� t0�2

. �58�

There is great freedom in choosing the form of the transmitter
ime function and its frequency content in the fictitious wave domain
s long as it is causal or sufficiently small at the initial time. The ad-
antage of using the first derivative of a Gaussian is most apparent if
n impulse response is required in the diffusive time domain. The
mpulse response in the diffusive time domain has a DC contribution
ot equal to zero. Thus, Jn

T�� �0��0 is required in equation 20 to
uild the proper spectrum for equation 21. The zero-frequency situa-
ion does not require a special analysis or implementation if the
ransmitter time function in the fictitious wave domain is the first de-
ivative of a Gaussian, as can be seen from equation C-11. In this
ase, the � term in the denominator of equation 19 is canceled in the
ransform. There is an advantage in terms of reduced CPU time to
un with a transmitter waveform in the fictitious wave domain that
as high frequency content, as already mentioned.

The maximum allowed frequency is given by the grid lengths and
he dispersion properties of the derivative operators. The time t0 in
quation 58 can be moved to earlier times because the frequency
ontent is increased and the waveform is sharpened and can still give
time function that is approximately causal. If the maximum fre-
uency fmax is given from the dispersion analysis, I use � �� fmax

2

nd t �� / f .
0 max
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he fictitious wave domain

The first example is of the electromagnetic field in the fictitious
ave domain. The resistivity �conductivity� model is shown in Fig-
re 1. This example is performed with a grid spacing of 20 m and a
aximum source frequency of 25 Hz. The operator half-length is

our for all three spatial directions.
This problem could have been solved equally well with a 100-m

rid spacing and a maximum frequency of 5 Hz. The high-frequen-
y content and dense sampling is chosen for illustration purposes: It
elps separate events on the snapshots shown in Figures 2 and 3.
his is a shallow-water case with a water depth of 200 m. The area
bove the red line in Figures 2 and 3 is air. The electromagnetic field
s extrapolated into this domain of the model by equations 46–50.
he blue line indicates the seabed, the green line indicates the resis-

or, and the black line shows the boundary to the lower half-space.
he snapshots in Figures 2 and 3 are for the inline electric field in the
ource plane. These are snapshots of the inline electric field still in
he fictitious wave domain and prior to the transform to the diffusive
requency domain.

The amplitudes in Figure 2 are scaled up so that the airwave is vis-
ble. The airwave is the horizontal event at a depth of 150 m. The ar-
ows indicate the propagation direction. The airwave amplitude is
ot large compared to other events in the fictitious wave domain but
t could contribute significantly to the field amplitudes in the diffu-
ive domain resulting from its early arrival. It is apparent from the in-
pection of snapshots for times neighboring the time of the snapshot
n Figure 2 that the airwave is the first arrival at the seabed above a
ource-receiver separation of 1 km.

The second arrival at a 1-km offset is the wave refracted along the
eabed. This is the strongest event at 1 km. It also dominates the dif-
use contribution at this offset. However, the second arrival at a 2
km source-receiver separation is the first water-bottom multiple of
he airwave. The contribution of the airwave in the diffusive domain
ncreases from this offset and outward because the time series is
eighted with the term e����0t�, as can be seen in equation 17. Late

rrivals in the fictitious wave domain are exponentially damped
ompared to early arrivals when diffusive field contributions are ex-
racted.

Figure 3 displays the inline electric field at a later stage. The am-
litude scaling is reduced compared to Figure 2. The contribution
rom the resistor is clearly visible and the propagation direction is il-
ustrated with the black arrow. The contribution from the resistor
ill be the third arrival for source-receiver separations above 2.5 km

xcept for some high-order water-bottom multiples of the airwave.

200 m

1100 m

0.3125 Ohm-m

1.5 Ohm-m

50 Ohm-m

1000 m

100 m

Receivers

Source

Halfspace 2 Ohm-m

igure 1. The cross-section of the 3D resistivity �conductivity� mod-
l used for the snapshot examples.
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
he contribution from the resistor becomes important in the diffu-
ive domain because it arrives relatively early at large offsets in the
ctitious wave domain and has high amplitude.
The transform in equation 17 that takes the data from the fictitious

ave domain to the diffusive domain is a temporal transform. It will
ot affect the propagation paths taken by the field in the fictitious
ave domain. Thus, the propagation paths in the fictitious wave do-
ain and the real diffusive domain must be the same. This is also the

ase for scattering amplitudes. If the medium is inhomogeneous,
here will be scattered events. These scattered events can be de-
cribed by reflection and transmission amplitudes for simple mod-
ls. The reflection and transmission coefficients must be the same in
he fictitious wave domain and in the real diffusive domain. Howev-
r, the transform in equation 17 puts a strong weight on early arriv-
ls. The early arrivals in the fictitious wave domain at small offsets
less than 1–2 km� in a typical marine CSEM setting are reflections.
owever, for larger offsets the early arrivals at the seabed are domi-
ated by postcritical events such as refracted and guided waves. This
akes sense when comparing to the diffusive fields obtained after

he transform from the fictitious wave domain. The early arrivals in
he fictitious wave domain have taken a high-velocity path, which
quals low conductivity in the fictitious wave domain. Thus, the ob-
erved field in the diffusive domain is dominated by the propagation
aths that have experienced the least absorption.

It could be inferred that ray tracing is an option for the simulation
f the electromagnetic fields in a CSEM survey because the fields
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igure 2. Snapshot of the inline electric field in the source plane at an
arly time. The blue line indicates the seabed, the green line indi-
ates the resistor, and the black line shows the boundary to the lower
alf-space. The airwave is the horizontal event at a depth of 150 m.
he arrows indicate the propagation direction.
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igure 3. Snapshot of the inline electric field in the source plane at an
ntermediate time. The blue line indicates the seabed, the green line
ndicates the resistor, and the black line shows the boundary to the
ower half-space. The contribution from the resistor is the dipping
vent just below the black arrow. The arrow indicates the propaga-
ion direction.
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FDTD simulation of marine CSEM surveys F43
an be simulated by a wave equation. Ray tracing is an option in seis-
ic modeling because a significant contribution to the total recorded
eld is precritical reflections. These are fairly easy to implement nu-
erically. However, as stated above, the parts of the electromagnetic
eld that are important in a marine CSEM survey are typically post-
ritical and guided events. These are more cumbersome to imple-
ent in a ray-tracing code.

he diffusive frequency domain

Most marine CSEM surveys to date have been performed with a
eriodic transmitter current. The transmitter waveform typically
ill concentrate the output energy on a subset of frequencies — nor-
ally, three to five frequencies. However, a larger span of frequen-

ies usually is analyzed in the survey design; therefore, one of the ad-
antages of the scheme discussed here is that a multitude of frequen-
ies can be extracted from a single modeling run.

I use a deep-water model and a shallow-water model to demon-
trate the performance of the method for calculating diffusive fields
n the frequency domain. The FDTD fields are compared to refer-
nce fields calculated with a plane-layer method �Løseth and Ursin,
007�. The deep-water model is shown in Figure 4. The water depth
s 3050 m. The resistor is buried 1000 m below the seabed and has a
hickness of 100 m. The FD grid has a spacing of 100 m in all spatial
irections and the operator half-lengths are three. The source maxi-
um frequency in the fictitious wave domain is 3 Hz. The frequen-

ies 0.25, 0.75, and 1.25 Hz are extracted from the FDTD calcula-
ion. The amplitude and phase curves of the inline electric field are
hown in Figure 5. The black curves represent the plane-layer meth-
d and the green curves represent the FDTD
ethod after the transforms in equations 17 and

9 are followed by the source deconvolution in
quation 20. The normalized amplitude ratios be-
ween the two methods stay within 1.0�0.001
or 0.25 Hz and 1.0�0.008 for 1.25 Hz. The dis-
repancy increases moderately with frequency
ut good results can be obtained for all frequen-
ies normally used in marine CSEM experiments.
he phase difference stays within 1 degree at
.25 Hz and within 4 degrees at 1.25 Hz.Aphase
ifference 
� �in radians� can be equated with an
ngular frequency 2� f times a time difference
� so that 
� �2� f
� . If this is done for the
hase curves shown in Figure 5, then this time
ifference is approximately 10 ms for all fre-
uencies. The typical sampling interval used for
SEM receivers today is 20 ms so this difference is approximately
alf the sampling interval.

The shallow-water model is shown in Figure 6. The step lengths,
perator half-lengths, and transmitter maximum frequency are as for
he deep-water case. The amplitude and phase curves for the inline
lectric field are shown in Figure 7. The black curves represent the
lane-layer method and the green curves represent the FDTD meth-
d. The normalized amplitude ratios between the two methods stay
ithin 1.0�0.03 for all frequencies. The phase difference stays
ithin 0.2 degrees for 0.25 Hz and within 1 degree at 1.25 Hz.
hus, if I take the plane-layer modeling to give the ground truth,
hen I compare the deep-water case with the shallow-water case, I
nd that amplitudes are modeled more correctly in the deep-water
ase and the phase responses are modeled more accurately in the
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Figure 5. Inli
black lines are
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
hallow-water case. I have not identified the source of this differ-
nce. I find the discrepancies in either case to be sufficiently small to
ive reliable results for simulation of real data.

A real data case is shown in Figure 8. The observed data is from a
ecent survey over the Troll West Gas Province described in Gabri-
lsen et al. �2009�. The chosen receiver is from the “2D monitoring
ine” described there and is situated close to the edge of the reservoir.
he negative offsets in Figure 8 are for the source outside the reser-
oir and the positive offsets are for the source above the reservoir.

3050 m 0.3125 Ohm-m

1.5 Ohm-m 1000 m
Receivers

Source

Halfspace 2 Ohm-m

100 m50 Ohm-m

igure 4. The cross-section of the deep-water 3D resistivity �con-
uctivity� model used for comparison with the plane-layer method.
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igure 6. The cross-section of the shallow-water 3D resistivity �con-
uctivity� model used for comparison to the plane-layer method.
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ross-sections of the horizontal and vertical resistivity models are
hown in Figure 9. The position of the receiver is at 14.5 km, which
s approximately 1.5 km outside the reservoir on the left side. The
ater depth is approximately 330 m; therefore, there is a substantial

irwave component in the observed data. The horizontal and vertical
onductivity models used for the simulation were derived from full
aveform inversion of the complete line. The inversion method
sed was an in-house 2.5D scheme with a different modeling algo-
ithm than the one discussed here. The retrieved conductivity mod-
ls have no variations normal to the towline direction. Models with
D variations cannot be obtained from a single survey line but re-
uire data acquired on a surface grid. This was not available here.

The resistivity in the water layer was 0.29 �m. The horizontal re-
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igure 7. Inline electric field for 0.25, 0.75, and 1.25 Hz for the shal
lack lines are for plane-layer modeling. The green lines are for FDT
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igure 8. Comparison of real and synthetic inline diffusive electric
elds for a receiver over the Troll West Gas Province. The real data
re in black and the synthetic data are in green. The frequencies are
.25, 0.75, and 1.25 Hz.
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igure 9. Cross-sections of horizontal and vertical resistivities use
f� synthetic data in Figure 8.
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istivity varied from 1.2 �m in the shallow part of the model to
.5–1.8 �m below 1800 m with a slight increase in resistivity along
he towline �increasing x-coordinate�. The vertical resistivity has a
alue of 3.5–3.8 �m from the mud line down to 500 m. From
00 m and down to the top reservoir at 1300 m, the vertical resistivi-
y is 2.2 �m. Below 1800 m, the vertical resistivity is 3.0–3.5 �m
ith an increase along the towline. The simulation was performed
ith grid lengths of 100 m in the two horizontal directions and 50 m

n the depth direction. Fourth-order optimized derivative operators
ere used for all three spatial dimensions. The fit between the ob-

erved and synthetic data is in general very good for both amplitude
nd phase. The remaining misfit can very well be caused by the fact
hat we do not know the subsurface with sufficient accuracy.

The diffusive time domain

The diffusive time-domain response can be
calculated if the diffusive frequency-domain re-
sponse is available over a sufficiently large fre-
quency range. The calculation of the diffusive
time-domain response does not increase the sim-
ulation time in the fictitious wave domain except
for the calculation of frequency responses in
equation 17 and a final FFT that takes the record-
ed data from the diffusive frequency domain to
the diffusive time domain.

The whole-space solution of the impulse re-
sponse of the electric field can be found by a time
differentiation of equation 2.50 in Ward and Ho-
hmann �1987�. Figure 10 shows the inline electric

eld at an offset of 5000 m in a 1 �m whole-space as the black
urve. The green curve is the result of an FDTD simulation in the fic-
itious wave domain. The wave-domain inline electric field is trans-
ormed according to equations 17, 19, and 20, followed by equation
1. The step lengths used were 100 m, the operator half-lengths
ere all equal to two, and the maximum transmitter frequency was
Hz.
I have also extracted diffusive time-domain solutions from the

imulations described above for the models in Figures 4 and 6. The
omparison is with the plane-layer method described in Løseth and
rsin �2007�. For this method, a sufficiently large frequency spec-

rum was calculated and the spectrum was transformed to the time
domain to give the impulse response. The deep-
water response of the inline electric field at a
source-receiver separation of 5000 m is shown in
Figure 11 and the shallow-water response of the
inline electric field at a source-receiver separation
of 9000 m is shown in Figure 12. The fit for the
deep-water case is good for the whole time se-
quence.

The main contribution at 5000 m is the re-
sponse from the resistor. There is a small discrep-
ancy between the two methods at times earlier
than 0.03 s for the shallow-water case but the first
peak, which corresponds to the air wave, and the
second peak, which is dominated by the resistor
contribution, are very close in amplitude for both
methods. The two most challenging areas for ex-
tracting the time-domain impulse response in the
diffusive domain from the FDTD simulations in
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FDTD simulation of marine CSEM surveys F45
he fictitious wave domain are the near-field, where the contributions
rom high frequencies dominate, and very large offsets in deep wa-
er, where the duration of the signal is large. The long duration of the
ignal dictates a very fine frequency sampling to avoid wrap-around
ffects in the transform from the diffusive frequency domain to the
iffusive time domain.

ack to the fictitious wave domain

The area of application for modeling tools based on the correspon-
ence principle increases if it is possible to transform data from the
iffusive domain to the fictitious wave domain. This opens up the
ossibility of performing adjoint state reconstruction of a field from
measured boundary condition, a key factor in calculating the gradi-
nt with respect to model parameters �Tarantola, 1984�. There is a
arge class of inverse methods that requires the gradient from the
resent iteration plus potential gradients from previous iterations to
erform the model update, among which are steepest descent, conju-
ate gradient, and BFGS types of schemes. It is already well estab-
ished that the transform from the diffusive frequency domain to the
ctitious wave domain is ill-posed. Equation C-11 combined with
quation C-14 shows there is a nonuniqueness problem related to
his transform. From the combination of these two equations, it is
lear that an infinite multitude of source waveforms in the fictitious
ave domain give the desired solution in the diffusive frequency do-
ain. The nonuniqueness is not necessarily a disadvantage. It gives
large degree of freedom in postulating the source waveform in the
ctitious wave domain. This postulated waveform can be estimated
y an inverse procedure. This topic is also covered by Støren et al.
2008� for the complex frequency method of Maaø �2007�.

Assuming that En
B�xr,t� is a boundary condition for the diffusive

eld, the adjoint state is according to Tarantola �1984�,

Ek�x,t���
0

T

d��dS�xr�Gkn
EJ�x,� �xr,t�En

B�xr,� �

��
0

T

d��dS�xr�G̃kn
EJ�x,t�xr,� �En

B�xr,� �, �59�

-�

igure 10. Comparison of the inline diffusive electric field in a
hole-space model at a source-receiver offset of 5000 m. The ana-

ytic result is in black. The FDTD result is in green.
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
here G̃kn
EJ�x,t �xr,� � is the adjoint state Green’s function and dS�xr�

s a surface integral element over the receiver domain. The frequen-
y-domain representation is

Ek�x,����dS�xr�G̃kn
EJ�x,��xr�En

B�xr,��, �60�

here the tilde indicates a complex conjugate. If it is possible to ob-
ain a boundary condition En�

B�xr,t�� in the fictitious wave domain
hat fulfills

� -

igure 11. Comparison of the inline diffusive electric field in the
eep-water model at a source-receiver offset of 5000 m. The plane-
ayer result is in black. The FDTD result is in green.

-�

igure 12. Comparison of the inline diffusive electric field in the
hallow-water model at a source-receiver offset of 9000 m. The
lane-layer result is in black. The FDTD result is in green.
EG license or copyright; see Terms of Use at http://segdl.org/
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En
B�xr,����

0

T

dt�En�
B�x,t��e����0t�ei���0t�, �61�

hen the adjoint state Ek��x,t�� in this domain is

Ek��x,t����
0

T

d� ��dS�xr�G̃kn�
EJ�x,t��xr,� ��En�

B�xr,� ��,

�62�

here G̃kn�
EJ�x,t� �xr,� �� is the adjoint state Green’s function in the fic-

itious wave domain. The relation between this Green’s function and
he adjoint state Green’s function in the diffusive domain can be de-
ived from equations 17–20, assuming that Jn�

T�t���� �t��� �� and

�
0

T

dt�G̃kn�
EJ�x,t��xr,� ��e����0t�ei���0t�

��2�0

i�
G̃kn

EJ�x,��xr�e����0��ei���0��. �63�

The transform of the field in equation 62 gives the field Ēk�x,��,
hich is related to the desired field in equation 60 by

Ēk�x,����
0

T

dt�Ek��x,t��e����0t�ei���0t�

��
0

T

dt��
0

T

d� ��dS�xr�G̃kn�
EJ�x,t��xr,� ��

� En�
B�xr,� ��e����0t�ei���0t�

��2�0

i�
�dS�xr�G̃kn

EJ�x,��xr�En
B�xr,��

��2�0

i�
Ek�x,�� . �64�

As I have already noted, the transform from the diffusive frequen-
y domain to the fictitious wave domain is nonunique. This gives a
arge degree of freedom in choosing the representation of the time
unction in the fictitious wave domain. I propose to use as base func-
ions the second derivative of the Gaussian as given in equation 56:

� �t��� m���� m

�
e�� m�t�� � m�2

, �65�
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igure 13. Comparison of an observed inline elec-
ric field �black curve� with the result of first obtain-
ng a representation of the same field in the ficti-
ious wave domain and then taking this field back to
he diffusive frequency domain �green curve�.
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ith a fixed choice of � m to ensure causality,

� m�
�3

� m
2 , �66�

hich results from fmax�
�

� m
and � m�� fmax

2 .
The index m runs over the number of frequencies to fit so that the

stimated fictitious wave-domain boundary condition Ên
B�xr,t�� be-

omes

Ên
B�xr,t����

m

Am� t�
2

� �t��� m� . �67�

The frequency-domain representation is

Ên
B�xr,����

m

Am2��0e����0� mei���0� me�i
��0� m

2

2�3 e�i
�
2 .

�68�

The above function has 2m parameters, Am and � m, that must be es-
imated. I minimize the functional � , which measures the difference
etween the observed boundary condition En

B�xr,�� and the estimate
ˆ

n
B�xr,��, in the least-squares sense in

� ��
�

�En
B�xr,��� Ên

B�xr,���*�En
B�xr,��� Ên

B�xr,��� .

�69�

I have 2m observations because I use m frequencies with En
B�xr,��

omplex. An example of a real data set with three frequencies is
hown with black curves in Figure 13. This is the same data set from
roll as shown in Figure 8. The inline electric field is plotted. The

eld Êx
B�xr,t�� resulting from equation 67 is shown in Figure 14. The

ransformation of Êx
B�xr,t�� to the diffusive frequency domain is

hown as the green curve in Figure 13. The fit between Ex
B�xr,�� and

he estimate Êx
B�xr,�� is very good. Figure 14 shows one of an infi-

ite number of valid representations for Êx
B�xr,t��. Each trace in Fig-

re 14 is normalized to unity. The true-amplitude variation with
ource-receiver separation is much larger than what seems apparent
n Figure 14.
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CONCLUSION

The correspondence principle for wave and diffusion fields can be
sed to implement numerically highly efficient FDTD schemes to
imulate marine CSEM data. The numerical efficiency is resulting
rom two factors: The first is that a relatively large time step can be
aken because a hyperbolic system is solved; the second is that rela-
ively short simulation times can be used because the transform from
he fictitious time domain to the diffusive frequency domain quench-
s late arrivals caused by the exponential decay factor. The method is
ery well suited for modeling frequency-domain diffusive fields but
lso time-domain diffusive fields can be recovered. The scheme here
s with optimized derivative operators. Second-order to eighth-order
perators are implemented for flexibility. For this particular method,
find the choice of fourth-order and sixth-order operators gives the
ost numerically efficient calculations, but this result depends on

omputer architecture. An implementation with high-order opera-
ors requires that both electric and magnetic fields be extrapolated si-

ultaneously into the air layer to obtain a proper description of the
irwave.

A scaling parameter �0 is introduced for convenience to simplify
ispersion and stability analysis. The diffusive domain Green’s ten-
or is independent of the scaling parameter. I have formulated a sta-
ility condition for high-order staggered-derivative operators that is
lso valid for acoustic and elastic seismic wave propagation.

The bandwidth of the recovered fields in the diffusive domain is
ndependent of the bandwidth of the fields in the fictitious wave do-

ain. The fields in the fictitious wave domain do not represent ob-
ervable fields but the propagation paths and interaction/reflection
mplitudes are not altered by the transform from the fictitious wave
omain to the diffusive frequency domain, except for the fact that
his transform contains an exponential decay factor that damps down
ate arrivals in the fictitious wave domain. This fact can be used to es-
imate the maximum required simulation time in the fictitious wave
omain. The simulation can be terminated safely when the direct
ave in the water reaches the maximum source-receiver separation.
The propagation paths that contribute most to the diffusive do-
ain fields are the airwave �in shallow water� plus typically post-

ritical events such as refracted and guided events. The transform
rom the diffusive frequency domain to fictitious wave domain is an
ll-posed problem. The transform is nonunique. There is a multitude
f field representations in terms of the waveform in the fictitious
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igure 14. One possible representation in the fictitious wave domain
f the observed frequency-domain inline electric field in Figure 13.
ach trace is normalized to unity to display the field at large source-

eceiver offsets.
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ave domain that can give the proper field behavior in the diffusive
omain. This gives a large degree of freedom in postulating temporal
aveforms for boundary conditions in the fictitious wave domain

hat reproduce correct diffusive frequency-domain fields.
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APPENDIX A

THE COMPLEX FREQUENCY METHOD

The method proposed by Maaø �2007� can be derived by intro-
ucing a complex frequency in the diffusive domain Maxwell equa-
ions

�� �H�x,�����x�E�x,����J�x,��,

� �E�x,��� i��H�x,����K�x,�� . �A-1�

Using

i� � i���1� i����, �A-2�

hich is equation 16 in Maaø �2007�, gives

�� �H�x,�����x�E�x,����J�x,��,

�E�x,��� i���1� i�����H�x,����K�x,�� . �A-3�

By

E��x,����E�x,��,

H��x,���� �1� i����H�x,��,

J��x,���� �1� i����J�x,��,

K��x,����K�x,��, �A-4�

quation A-3 becomes

�� �H��x,���� �1� i������x�E��x,����J��x,���,

� �E��x,���� i���H��x,����K��x,���, �A-5�

hich are equations 9 and 10 in Maaø �2007�.
Recall that for the correspondence principle, we have equation

0:

�i�����2i��0. �A-6�

For the complex frequency method, I introduce

� �
1

��

, �A-7�

hich by equation A-2 becomes

�i�����i�2�� ���
2 ��� . �A-8�

For a large value of � ��� is small compared to ��, I find for the
rimed frequency in Maaø’s system,
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�i�����i2���, �A-9�

hich is similar to equation A-6. This result shows that the complex
requency method of Maaø approaches the correspondence princi-
le method if a large value of � is used. The methods are, however,
ot identical. The complex frequency method will give fields with a
iffusive tail in the fictitious time domain. The implication is that
imulations based on the correspondence principle method can be
erminated at a somewhat earlier time than the complex frequency

ethod. This can save some computer time in pure forward simula-
ion. However, there is a potential benefit of the complex frequency

ethod compared to the correspondence principle method: Process-
ng methods such as 3D inversion can depend on adjoint state model-
ng. This requires that a difference field representation in the fre-
uency domain be transformed back to the fictitious time domain. It
s well known that this is an ill-posed problem with correspondence
rinciple methods. The problems with such a transformation could
e smaller if a diffusive component was kept in the Maxwell equa-
ions, as is the case with the complex frequency method of Maaø.
he transform to the fictitious wave domain for this scheme is dis-
ussed by Støren et al. �2008�.

APPENDIX B

INDEPENDENCE OF SCALE PARAMETER

The choice of �0 gives a scaling of the time axis in the fictitious
ave domain. The only limitation on �0 is that it is real and larger

han zero to give positive and real propagation velocities. Practical
hoices must ensure the fields have numerical values that preserve
ccuracy both in the wave simulation and in the transform from the
ctitious time t� to the frequency domain for diffusive fields. The q
omain representation given by Lee et al. �1989� can be obtained by
ntroducing the timelike parameter q in

q��2�0t�. �B-1�

Equation 14 becomes

�� �H��x,q����x��q�E��x,q�
�2�0

���J��x,q�,

� ��E��x,q�
�2�0

����qH��x,q���
K��x,q�
�2�0

,

�B-2�

hich by

E��x,q��
E��x,q�
�2�0

,

H��x,q��H��x,q�,

J��x,q��J��x,q�,

K��x,q��
K��x,q�
�2�0

, �B-3�

ives

�� �H �x,q����x�� E �x,q���J �x,q�,
� q � �
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� �E��x,q����qH��x,q���K��x,q� .

�B-4�

Equation 17 becomes

Ei�x,����
0

Q

dqEi��x,q�e���
2

qei��
2

q, �B-5�

ith Q sufficiently large to include the important arrivals. Equation
8 becomes

Jn�x,���
1

�� i�
�

0

Q

dqJn��x,q�e���
2

qei��
2

q. �B-6�

APPENDIX C

THE TRANSFORM FROM THE FICTITIOUS
WAVE DOMAIN TO THE DIFFUSIVE

FREQUENCY DOMAIN

The diffusive Green’s function in the frequency domain for a
hole-space is well known �Ward and Hohmann, 1987�. The

-component of the Green’s function resulting from an infinitesimal
lectric dipole in the x-direction is

Gxx
EJ�x,����i��

eik�r

4�r
�� x2

r2 �1	��3
x2

r2 �1	� i

k�r

�
1

�k�r�2	�, �C-1�

here k� ��i��� and r��x2�y2�z2.
Deriving the wave-domain electric field resulting from an infini-

esimal electric dipole in the x-direction is straightforward. The vec-
or potential for the nonconductive case A�x,t� is given in Ward and
ohmann �1987�. The electric field can be expressed as

E�x,t������x,t���t A�x,t�, �C-2�

here ��x,t� is a scalar potential. The Lorenz gauge condition re-
ates the vector and scalar potential,

�A�x,t������ t��x,t���
1

c2�t��x,t� . �C-3�

I introduce the source polarization P by J�x,t���t P�x,t� so for
he x-component,

Px�xs,t��� �x�xs�� �t� . �C-4�

The x-component of the electric field caused by an infinitesimal
lectric dipole in the x-direction is then

Ex�x,t��
�

4�r
�� x2

r2 �1	� t
2� �t�r/c���3

x2

r2 �1	
�� c

r
� t� �t�r/c��

c2

r2 � �t�r/c�	� . �C-5�

The above solution is general.An FDTD simulation of equation 4
r equation 14 in a whole-space results in the above electric field.
EG license or copyright; see Terms of Use at http://segdl.org/



E
p
G
fi
t
e

G
t

w

w
t
g
d
p
T
l
w

a

i
c
�

i

w

t
w
m
m
w
f

C

w
f
g
fi
t
fi
e
o
t
t
c
d

B

C

C

C

D

D

FDTD simulation of marine CSEM surveys F49
quation C-5 gives the response in the fictitious wave domain if the
ropagation velocity is c��2�0 /�� . I use equation C-5 to obtain a
reen’s function in the form of equation 20. Thus, I write the electric
eld in equation C-5 as Ex��x,t�� and perform the transform in equa-

ion 17. I also need the transformed time function for the source in
quation 19.

I assume that the polarization source time function � �t�� is a
aussian so that the current source time function is the time deriva-

ive of a Gaussian,

� �t�����

�
e�� �t�� t0�2

. �C-6�

The frequency-domain representation of � �t�� in the fictitious
ave domain is

� �����e�
��2

4� ei��t0, �C-7�

here I have used a double prime on the angular frequency to mark
hat the spectrum is analyzed in the fictitious wave domain. The an-
ular frequency �� is then real. The maximum frequency in the wave
omain is given by � . This frequency determines the dispersion
roperties of the FDTD simulation in the fictitious wave domain.
hus, � �t�� will approach a temporal Dirac delta distribution in the

imit � →�. Appropriate choices for finite-difference simulations
here a maximum allowed frequency fmax is already given as

� 
� fmax
2 . �C-8�

A proper choice of t0 is required to make the signal close to caus-
l.Alower limit for finite-difference simulations can be

t0�
�

fmax
. �C-9�

However, the following derivation is performed without choos-
ng the value of � . The only assumption is that the pair � and t0 give a
ausal function in the sense that any integral contributions from t�

�� to t��0 can be neglected.
The frequency transform of the transmitter current �equation 19�

s required by equation 20. Thus, I need

�
0

T

dt��t�� �t��ei��t���i��ei��t0e�i
��0
2� . �C-10�

The diffusive domain representation for the transmitter current is

Jx
T����2�0e����0t0ei���0t0e�i

��0
2� . �C-11�

For the transform of Ex��x,t��, I need

�
0

T

dt�� �t��r/c�ei��t��ei���t0�r/c�e�i
��0
2� ,

�
0

T

dt��t�� �t��r/c�ei��t���i��ei���t0�r/c�e�i
��0
2� ,

�
0

T

dt��t�
2

� �t��r/c�ei��t�����2ei���t0�r/c�e�i
��0
2� ,

�C-12�

ith the relations
Downloaded 24 Mar 2011 to 62.92.124.145. Redistribution subject to S
i��

c
� ik�,

i��c�
2��0

k�

,

c2�
2i��0

k�
2 . �C-13�

Note above in equations C-10 and C-12 that as a result of the
ransform � now appears in a phase factor only. The parameter � ,
hich determines the frequency spectrum in the fictitious wave do-
ain, does not determine the frequency spectrum in the diffusive do-
ain. Thus, the choice of the maximum frequency in the fictitious
ave domain does not influence the maximum frequency in the dif-

usive domain.
The diffusive domain representation for Ex� is

Ex�x,���Ex��x,�����i��
eik�r

4�r
�� x2

r2 �1	��3
x2

r2 �1	
�� i

k�r
�

1

�k�r�2	�
�2�0e����0t0ei���0t0e�i

��0
2� . �C-14�

Observe that Jx
T��� from equation C-11 is a factor in equation

-14 so that by equation 20 the Green’s function becomes

Gxx
EJ�x,���

Ex�x,��
Jx

T���
�� i��

eik�r

4�r
�� x2

r2 �1	
��3

x2

r2 �1	� i

k�r
�

1

�k�r�2	�, �C-15�

hich is equal to equation C-1. One result here is that the transform
rom the fictitious time domain to the diffusive frequency domain
ives a result in which the spectrum of the diffusive domain electric
eld in equation C-14 is independent of the spectrum of the field in

he fictitious wave domain. The spectrum of the electric field in the
ctitious wave domain is controlled by the parameter � . This param-
ter gives a phase correction only in equation C-14 and no influence
n the spectrum of the diffusive domain electric field. Further on,
his phase correction is not present for the Green’s function in equa-
ion C-15 because it is removed by the normalization with the source
urrent. Another result is that dependence on the scale parameter �0

isappears after the deconvolution that is dictated by equation 20.
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