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ABSTRACT

We have developed an efficient numerical scheme for fast mul-
timodel 3D electromagnetic simulations by applying a Schur
complement approach to a frequency-domain finite-difference
method. The scheme is based on direct solvers and developed
with constrained inversion algorithms in view. Such algorithms
normally need many forward modeling jobs with different resis-
tivities for the target zone and/or background formation. We geo-
metrically divide the computational domain into two subdomains:
an anomalous subdomain, the resistivities of which were permit-
ted to change, and a background subdomain, having fixed resis-
tivities. The systemmatrix is partially factorized by precomputing
a Schur complement to eliminate unknowns associated with the
background subdomain. The Schur complement system is then
solved to compute fields inside the anomalous subdomain.

Finally, the background subdomain fields are computed using
inexpensive local substitutions. For each successive simulation,
only the relatively small Schur complement system has to be
solved, which results in significant computational savings. We
applied this approach to two moderately sized 3D problems in
marine controlled-source electromagnetic modeling: (1) a deep-
water model in which the resistivities of the seawater and the air
layer were kept fixed and (2) a model in which focused inversion
was performed in a scenario in which the resistivities of the back-
ground formation, the air layer, and the seawater were known. We
found a significant reduction of the modeling time in inversion
that depended on the relative sizes of the constrained and uncon-
strained volumes: the smaller the unconstrained volume, the
larger the savings. Specifically, for a focused inversion of the
Troll oil field in the North Sea, the gain amounted up to 80%
of the total modeling time.

INTRODUCTION

Having an efficient algorithm for 3D electromagnetic (EM) mod-
eling is a key ingredient to survey design, inversion, and interpre-
tation of controlled-source EM (CSEM) data in complex geologic
settings. Several numerical approaches exist for 3D EMmodeling in
the frequency and time domains. Common approaches include the
finite-difference (FD), finite-volume (FV), finite-element (FE), and
integral equation (IE) methods; see, e.g., Avdeev (2005), Zhdanov
(2009), and Börner (2010) for detailed reviews of these approaches.
In the frequency domain, EM modeling reduces the governing par-
tial differential equation (PDE) to one system of linear equations
Mx ¼ s per frequency, where M is the system matrix defined by
the medium properties and grid discretization, x is a vector of un-
knowns containing monochromatic EM fields, and s represents a
monochromatic source and boundary conditions (Newman and

Alumbaugh, 1995). The FD and FE methods are the most popular
methods; in both of these methods, the system matrix M is sparse
and can be computed easily. This sparseness is crucial to make the
solvers — direct, iterative, or hybrid — used to solve the system
of linear equations fast and efficient.
During recent years, inversion has become the main tool to inter-

pret CSEM data. Three-dimensional inversion converts the acquired
CSEM signals over a given area to a 3D image of the subsurface
resistivity distribution of that area. The presence or absence of hydro-
carbons has been correctly predicted using CSEM inversion in nu-
merous instances; for example, Fanavoll et al. (2012) and Gabrielsen
et al. (2013) present CSEM inversion success stories in the Barents
Sea covering many different geologic provinces including major re-
cent discoveries: Skrugard, Havis, and Norvarg.
To recover a 3D, geologically consistent, resistivity image of sub-

surface, CSEM inversion algorithms usually require many forward
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simulations of CSEM responses over different resistivity models.
Most of the time, these models differ from each other only within
a smaller subdomain. In a marine environment, these situations oc-
cur for example in the following scenarios: (1) One knows the re-
sistivities of the seawater and the air layer (Figure 1a) and allows the
resistivities of the formation to be updated by inversion and (2) in
addition to the seawater and the air layer resistivities, one also
knows the resistivity of the background formation (Figure 1b)
and allows the resistivity to be updated only within a smaller target
reservoir. Scenario (1) is very common in marine CSEM surveys
because the resistivity of the seawater is typically recorded during
the survey and the resistivity of air is known. Scenario (2) may oc-
cur in the case of a producing field, e.g., the Frigg gas field (Ham-
ilton et al., 2010), the Troll field (Gabrielsen et al., 2009), or the
Snøhvit field (Gabrielsen et al., 2012), in which one has a good
understanding of the background formation or in areas with existing
seismic, well log, and/or magnetotelluric data giving confidence in
the fine-scaled structures and resistivities of the background forma-
tion. Several CSEM surveys have been carried out over such areas
to precisely locate hydrocarbon-bearing reservoirs by integrating
CSEM results with seismic and well-log data, e.g., the above men-
tioned major recent discoveries presented by Fanavoll et al. (2012)
and Gabrielsen et al. (2013) and the Bøyla discovery (Roth
et al., 2013).
In such situations, the standard FD or FE methods would require

rediscretizing the entire computational domain to simulate 3D
CSEM responses for every new resistivity model even if the resis-
tivities have changed only in a smaller subdomain. Alternatively,
one can use the IE method, which permits running simulations only
over the smaller anomalous subdomain after computing the dyadic
Green’s functions of the background/constrained subdomain (Zhda-
nov, 2009). This reduces the size of system matrix M dramatically.
However, in the conventional IE method, the matrix M is dense, its
computation is a tedious and nontrivial task involving evaluation of
singular integrals, and sharp conductivity variations are difficult to
handle (Zhdanov, 2009). These disadvantages of the IE method are
quite serious, even though some progress has been reported on how
to avoid computation of the whole dense matrix M (Avdeev and
Knizhnik, 2009). Therefore, it might be more promising to look
for hybrid approaches in which some of the above challenges
are solved by invoking simpler FD/FE methods, whereas the main

computations are still restricted to the anomalous region only
(Gupta et al., 1987). Recent progress here includes an extension
of the IE method to an inhomogeneous background in which the
background fields are computed using the FD method (Endo et al.,
2010) and the IE method to compute a preconditioner for an iter-
ative FD solver that effectively eliminates the background nodes
from the iterative process (Zaslavsky et al., 2011).
In this paper, we present a new way to restrict simulations to the

anomalous subdomain within the simple framework of the FD
method via a Schur complement approach when using a direct
solver. The underlying idea is to decompose the entire computa-
tional domain into two subdomains: a background subdomain
and an anomalous subdomain. A sparse direct solver is used to re-
move the unknowns associated with the background subdomain and
precompute the corresponding Schur complement in a first simula-
tion. The Schur complement system is then solved to compute EM
fields in the anomalous subdomain, followed by local backward
substitutions that give EM fields in the background subdomain
too. For subsequent simulations, one only has to solve the Schur
complement system followed by local backward substitutions. Con-
sequently, for each subsequent simulation, the large matrix factori-
zation is reduced to the factorization of only a relatively small Schur
complement matrix. This results in significant savings in modeling
time, and hence, also in significantly reduced inversion times. The
magnitude of the savings depends on the relative sizes of the back-
ground and anomalous volumes: the smaller the anomalous volume,
the larger the savings. Moreover, the Schur complement approach is
more efficient for inversion algorithms in which the forward mod-
eling time contributes significantly to the inversion time.
The Schur complement is introduced by Haynsworth (1968) and

has been widely used, for example, in an algebraic domain decom-
position method in which the computational domain is divided into
several smaller subdomains (Smith et al., 1996; Saad, 2003). A di-
rect solver is used to remove subdomain interior unknowns by par-
tially factorizing matrices assembled on each subdomain and
computing the corresponding Schur complements. The Schur com-
plement systems are then solved with an iterative solver to compute
unknowns located at the interfaces among the subdomains. Finally,
the subdomain interior unknowns are computed by local backward-
forward substitutions. The approach is commonly referred to as a
hybrid direct-iterative solver and has been applied to various geo-

physical problems (see, e.g., Lu and Shen, 1997;
da Silva et al., 2010; Sourbier et al., 2011).
We use multifrontal massively parallel sparse

direct solver (MUMPS) (Amestoy et al., 2001,
2006), a direct solver, to compute the Schur
complement of the background subdomain by
partial factorization of the matrixM and to solve
the Schur complement system. MUMPS was
developed based on the multifrontal approach
(Duff et al., 1986; Liu, 1992) and parallelized
using a hybrid model of parallelism. The appli-
cation of direct solvers to 3D problems has
\traditionally been considered to be computation-
ally too demanding. However, recent advances in
matrix-factorization algorithms, along with the
availability of parallel computational resources,
have created the necessary conditions to attract
interest in factorization methods in the case of

Figure 1. Sketches illustrating background and anomalous subdomains. Panel (a) illus-
trates a case in which the resistivities of the air layer and seawater are known, and panel
(b) illustrates a case in which, in addition to the air layer and seawater resistivities, one
also knows the background formation resistivity.
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3D EM problems of moderate size, e.g., by Streich (2009), da Silva
et al. (2012), Yang and Oldenburg (2012), Grayver et al. (2013), and
Schwarzbach and Haber (2013).
In the remainder of this paper, we briefly describe the theory of

frequency-domain FD (FDFD) followed by the theory and imple-
mentation of our Schur complement approach. We then validate
our Schur complement scheme by comparing computed EM field
values to corresponding values obtained using alternative, well-
known modeling approaches. We thereafter illustrate the use of
our Schur complement FDFD scheme on a deepwater CSEM ex-
ample. The efficiency of this approach is subsequently discussed
for a focused 3D inversion in which the background resistivities are
constrained.

FINITE-DIFFERENCE ELECTROMAGNETIC
SCHEME

If the temporal dependence of the EM fields is e−iωt, then the
corresponding frequency-domain Maxwell equations are

∇ × E ¼ iωμH −K (1)

and

∇ ×H ¼ ðσE − iωεEÞ þ J; (2)

where E and H are, respectively, the electric and magnetic fields, J
and K are, respectively, electric and magnetic field sources, ω is
angular frequency, and μ, ε, and σ are, respectively, the magnetic
permeability, dielectric permittivity, and electrical conductivity of
the medium.
By taking the curl of equation 1 and substituting equation 2, we

obtain

∇ × ∇ × E − iωμðσE − iωεEÞ ¼ iωμJ − ∇ ×K: (3)

Because in the CSEMmethod one typically uses low frequencies,
in the range from 0.1 to 10 Hz, the displacement current can be
neglected as σ∕ðωεÞ ≫ 1. Therefore, equation 3 is written as

∇ × ∇ × E − iωμσE ¼ iωμJ − ∇ ×K: (4)

Equation 4 is a second-order PDE and forms the basis for CSEM
modeling. To obtain a solution, this equation is discretized on a
staggered Yee grid (Yee, 1966) following Newman and Alumbaugh
(1995). The electric and magnetic field components are assigned to
the edges and the faces of each cell, respectively (Figure 2). For a
cell with the main node ði; j; kÞ located at the top left corner,
the x, y, and z components of the electric field are located
at ðiþ 1

2
; j; kÞ,ði; jþ 1

2
; kÞ, and ði; j; kþ 1

2
Þ, respectively. In the

same cell, the x, y, and z components of the magnetic field are
located at ði; jþ 1

2
; kþ 1

2
Þ, ðiþ 1

2
; j; kþ 1

2
Þ, and ðiþ 1

2
; jþ 1

2
; kÞ,

respectively.
The resistivity within each cell is assumed to be constant. The

above discretization requires resistivity values at each electric field
node (halfway along a given cell edge). This is obtained by com-
puting effective resistivity values at each node by properly averag-
ing the resistivity of surrounding cells using an averaging method
similar to that described in Davydycheva et al. (2003) or in Taflove
and Hagness (2005, p. 492).

The FD discretization of equation 4 is assembled into a system of
linear equations

Mx ¼ s; (5)

where M is the system matrix of dimension ð3NÞ2 for a modeling
grid havingN ¼ Nx × Ny × Nz cells, x is the unknown electric field
vector of dimension 3N, and s (dimension 3N) is the source vector
resulting from the right side of equation 4. The matrixM is a sparse
complex matrix, having up to 13 nonzero elements in a row if one
uses second-order finite differences. The off-diagonal entries of M
are real and depend only on the grid spacing while the diagonal
entries are complex and depend on the grid spacing as well
as the medium conductivity, the magnetic permeability, and the
frequency. In our modeling, the variations in the magnetic per-
meability are not considered, and it is assumed that μ ¼ μ0 ¼ 4π ×
10−7 H∕m.

Air layer and boundary conditions

A highly resistive thick air layer above the seawater is also in-
cluded in the model. This air layer is discretized with severely
stretched nonuniform cells whose thicknesses in the z-direction
grow as we move up from the sea surface as dzðnÞ ¼
dzð0Þ × λn, where n ¼ 0;1; 2; : : : , dzð0Þ is z-dimension of the
top cell in the sea and λ is a constant. During tests for various
1D models against quasi-analytical solutions (Løseth and Ursin,
2007), it was observed that an air layer of resistivity ∼107 Ωm
and thickness ∼70 km, discretized with ∼15 severely stretched non-
uniform cells, provides good accuracy (see the “Examples” sec-
tion). The last two parameters and dzð0Þ define the constant λ,
e.g., for dzð0Þ ¼ 100 m, we get λ ≈ 1.43.
Toward the static limit ðω → 0Þ in the highly resistive air layer,

the second term in equation 4 becomes negligible leading to non-
uniqueness of solution. Accordingly, it is common to enforce a
static divergence correction ∇:σE ¼ 0. This correction, originally
introduced to improve the convergence of iterative solvers (Smith,
1996) is sometimes also used at very low frequencies with
direct solvers (Grayver et al., 2013). However, for typical CSEM

Figure 2. The staggered Yee grid used to define the positions of the
electric and magnetic field nodes. The electric field components are
assigned to cell edges and the magnetic field components to cell
faces.
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frequencies (∼0.1 − 10 Hz) our experience is that this is not nec-
essary for direct solvers, which is in agreement with, e.g., Streich
(2009) and da Silva et al. (2012).
At all sides of the computational domain, Dirichlet boundary

conditions are applied by setting the electric field values to zero.
Moreover, we add seven nonuniform cells at the lateral and bottom
boundaries of the computational domain. Stretching for these cells
is done using the power law discussed above for the air layer with
λ ¼ 2. These stretched cells significantly reduce inaccuracies re-
lated to the finite extent of the computational domain.

SCHUR COMPLEMENT APPROACH

In this section, we describe our Schur complement-based FDFD
modeling approach. We assume that the forward modeling will be
used in constrained CSEM inversion schemes in which only certain
parts of the earth model can change their physical properties.

Matrix equations

Let us divide the computational domain into two subdomains a
and b. The background subdomain b consists of the unknowns as-
sociated with the part of the model in which resistivities are kept
fixed, whereas the anomalous subdomain a consists of the un-
knowns associated with the part of the model in which resistivities
are allowed to vary in the multimodel simulations. The linear sys-
tem in equation 5 written in block form for this decomposition of
the computational domain reads,

�
Mbb Mba

Mab Maa

��
xb
xa

�
¼

�
sb
sa

�
; (6)

where Mbb is a block matrix having coefficients involving only un-
knowns in subdomain b, whereas matrixMaa involves unknowns in
subdomain a. MatrixMba represents the influence of the unknowns
in subdomain b on the unknowns in subdomain a. Similarly, Mab

represents the influence of the unknowns in subdomain a on the
unknowns in subdomain b. The off-diagonal matrices Mba and
Mab are independent of the physical properties of the medium
and only depend on the grid spacings.
A block LU factorization of M into two-by-two block matrices

gives

M ¼
�
Mbb Mba

Mab Maa

�
¼

�
Lbb 0

Lab Laa

��
Ubb Uba

0 Uaa

�
¼ LU;

(7)

where Lbb,Lab, and Laa are the blocks of block lower triangular
matrix L, and Ubb, Uba, and Uaa are the blocks of block upper tri-
angular matrix U. The blocks Lbb and Ubb are lower and upper tri-
angular matrices, respectively, which can be computed via an LU
factorization ofMbb (i.e.,Mbb ¼ LbbUbb). The blocks Lab and Uba

are such that LabUbb ¼ Mab and LbbUba ¼ Mba. Finally,

S ¼ LaaUaa ¼ Maa − LabUba ¼ Maa −MabM−1
bbMba (8)

is the Schur complement matrix, where −MabM−1
bbMba represents

the contribution from the factorized background subdomain b to the
unfactorized anomalous subdomain a (Zhang, 2005).

Equation 6 can be rewritten using equations 7 and 8:

�
Mbb Mba

Mab Maa

��
xb
xa

�
¼

�
Lbb 0

Lab I

��
Ubb Uba

0 S

��
xb
xa

�

¼
�
sb
sa

�
: (9)

Once the partial factorization has been performed, one can compute
an intermediate vector y by forward substitution using

�
Lbb 0

Lab I

��
yb
ya

�
¼

�
sb
sa

�
: (10)

To proceed further we notice that

�
Ubb Uba

0 S

��
xb
xa

�
¼

�
yb
ya

�
; (11)

which simply reduces to

Sxa ¼ ya (12)

and

Ubbxb ¼ yb − Ubaxa: (13)

To compute the unknowns xa in subdomain a, one needs to solve
the Schur complement matrix equation 12. Finally, backward sub-
stitution can be applied to compute the unknowns xb in subdomain
b using equation 13.
Let us now consider a new medium in which the physical proper-

ties of subdomain a have changed, whereas those of the background
subdomain b remain the same. It follows that Mbb, and hence the
matrices Lbb and Ubb representing its factorized form, also remain
the same. As mentioned above, the off-diagonal matrices Mba and
Mab do not depend on the medium resistivities, hence the matrices
Lab andUba also remain same. It then follows from equation 10 that
the intermediate vector ywill also remain unchanged. Hence, to find
the unknowns x 0 for the modified medium using equation 11, one
only lacks the modified Schur complement S 0 ¼ M 0

aa −MabM−1
bb

Mba, where matrix M 0
aa is assembled on the anomalous subdomain

of the new model. Recalling again the nondependency of the off-
diagonal matrices Mba and Mab on the medium resistivities, the
whole term MabM−1

bbMba remains unchanged as long as the physi-
cal properties of the background subdomain b are unchanged. Thus,
the new Schur complement matrix S 0 can be trivially obtained from
the original Schur complement matrix S as

S 0 ¼ S −Maa þM 0
aa: (14)

One thus needs to carry out the following three steps to find the
unknowns for a medium with modified resistivities in the anoma-
lous subdomain: (1) compute the modified Schur complement using
equation 14, (2) get unknowns x 0

a in subdomain a by solving the
modified Schur complemented system S 0x 0

a ¼ ya, and (3) compute
the unknowns x 0

b in subdomain b by backward substitution using
equation 13. Importantly, one does not have to solve equation 5 for
the whole system again. One has to solve only equation 12 for the
unknowns x 0

a in the anomalous subdomain followed by backward
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substitutions for the unknowns x
0
b in the background subdomain. It

will take much less time provided that the anomalous subdomain is
considerably smaller than the whole system.

Practical implementation

Figure 3 shows a 2D slice of the staggered Yee grid used for FD
3D simulations. The dots indicate locations of the grid nodes; the
given slice in the x‐z plane contains only Ex and Ez nodes. As pre-
viously explained, the computational domain is divided into two
subdomains: a background subdomain b (shaded white) and an
anomalous subdomain a (shaded blue). In multimodel simulations,
the resistivities are allowed to change only in the anomalous sub-
domain, whereas in the background subdomain they must stay the
same. In the following paragraph, we explain which nodes of the
Yee grid become anomalous nodes corresponding to the unknowns
xa and which nodes of the Yee grid become background nodes cor-
responding to the unknowns xb.
In our FD scheme, each node is assigned a resistivity value ob-

tained by averaging the resistivity over a volume surrounding the
node. Hence, resistivities assigned at the nodes lying at the interface
between the background and anomalous subdomains are also af-
fected by the anomalous subdomain resistivities. For example,
Ex and Ez nodes lying at the interface between the background
and anomalous subdomains (depicted with red lines in Figure 3)
are affected by the resistivities of the anomalous subdomain cells.
A similar argument is also valid for Ey nodes lying at the interface
between the background and anomalous subdomains. On the
other hand, the resistivities of the nodes lying in the background
subdomain only half a cell away from the interface between the
background and anomalous subdomains do not depend on the re-
sistivities of the anomalous subdomain. We shall define the anoma-
lous nodes as the nodes whose resistivities depend on the
anomalous subdomain resistivities and the background nodes as
the nodes whose resistivities are independent of the anomalous sub-
domain resistivities. Consequently, the anomalous nodes include (1)
all interior nodes in the anomalous subdomain, and (2) all nodes
lying at the interface between the background and anomalous sub-
domains. The remaining nodes in the back-
ground subdomain are the background nodes.
Figure 4a shows the pattern of the system

matrixM that is obtained by discretizing the gov-
erning PDE (equation 4) on a Yee grid, whereas
Figure 4b shows the pattern of the Schur comple-
ment matrix S obtained by eliminating the back-
ground unknowns xb from matrix equation 9. It
can be seen that the Schur matrix S contains a
small dense block. This is because matrix M−1

bb
in general is dense while matrices Mab and
Mba are sparse with nonzero coefficients only
for the unknowns in the vicinity of the interface
between the background and anomalous subdo-
mains. Therefore, the product −MabM−1

bbMba is
sparse with a small dense block corresponding to
certain unknowns. These unknowns actually re-
present the nodes lying at the interface between
the background and the anomalous subdomains.
We call this interface the Schur interface. The
Schur complement of the background unknowns
only affects the nodes lying at the Schur inter-

face; this is why the rest of the matrix S remains intact and very
sparse. Furthermore, every node at the Schur interface becomes
connected to all other nodes there, through the eliminated back-
ground nodes, which results in a very dense block, essentially

Figure 3. Sketch of a 2D slice of the staggered Yee grid used for FD
3D simulations. The dots indicate the location of the grid nodes; this
slice in the x‐z plane contains only Ex and Ez nodes. The red line,
separating the anomalous subdomain a from the background sub-
domain b, is the Schur interface. The yellow and red color nodes
lying on the Schur interface and the interior of the anomalous sub-
domain are anomalous nodes and correspond to the unknowns xa.
The remaining nodes lying outside of the Schur interface are back-
ground nodes and correspond to the unknowns xb.

Figure 4. (a) The pattern of system matrix M in equation 5 discretized on an 8 × 8 × 8
grid and (b) the Schur complement matrix S in equation 12 obtained by removing the
background unknowns xb from equation 9. The matrix S is dense for the unknowns lying
on the Schur interface and remains sparse and the same as the matrixMaa for the interior
anomalous subdomain unknowns (Figure 3). For realistic CSEM problems with millions
of unknowns, the dense part of S occupies in the order of 1% × 1% of the matrix S.
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without nonzero elements. A similar pattern for Schur complement
matrices can be seen in domain decomposition approaches; see, for
example, Smith et al. (1996) and Saad (2003).
This property of the Schur complement matrix S allows us to

compute it efficiently. Namely, we may consider only the back-
ground unknowns, the unknowns lying at the Schur interface,
and the unknowns within two layers of anomalous subdomain cells
away from the Schur interface to compute the dense diagonal block
of S. This block constitutes part of the term −MabM−1

bbMba in equa-
tion 8. After that we build the total Schur complement matrix S by
adding the matrix Maa for the interior anomalous subdomain un-
knowns. Separate handling of the dense block of −MabM−1

bbMba

and the sparseMaa allows a much more efficient usage of computer
memory.
Another practical recommendation is related to the use of equa-

tion 14 when resistivities in the anomalous subdomain have been
updated (e.g., by a constrained CSEM inversion algorithm) and one
needs to compute the updated Schur complement matrix S

0
. The

operations in equation 14 can be performed only on the diagonal
elements because the off-diagonal entries ofMaa andM 0

aa are iden-
tical; they do not depend on the resistivities, but only on the grid
spacings, as mentioned earlier.
A direct sparse solver, MUMPS (Amestoy et al., 2001, 2006),

was used to compute the Schur complement of the background un-
knowns xb by partial factorization of the matrixM. MUMPS, being
a multifrontal solver, has the nice property that partial factorization
of Mbb naturally provides its Schur complement to the anomalous
subdomain without actually performing operations in equation 8.
The Schur complement is commonly referred to as “contribution
block” in the multifrontal solver nomenclatures (Amestoy et al.,
2001). Being mostly a sparse system of equations, the Schur com-
plement system Sxa ¼ ya is also solved with MUMPS.

EXAMPLES

In this section, we validate the accuracy of the developed
modeling algorithms against well-established methods. We then
illustrate the efficiency of our Schur complement-based FDFD
approach with two cases: a deepwater inversion with constrained
seawater and air layer, and a focused inversion in which resistivity
is only updated within a reservoir volume.

Validation against a layered earth model response

Let us examine the performance of our FDFD algorithms using
the layered earth model from Figure 5. The dimension of the model
is 20 × 20 × 5 km3. The FD grid has a spacing of 100 m in the x-
direction and 200 m in the y-direction. In the z-direction, the spac-
ing is nonuniform, with minimum and maximum spacings of, re-
spectively, 30 and 200 m. Except for the top side, each side of
the model is padded with seven nonuniform cells to accommodate
boundary conditions. The top side includes an air layer of thickness
∼70 km and resistivity 107 Ωm. The discretization of these addi-
tional layers (not shown in Figure 5) was discussed above. The dis-
cretization of the FD grid model results in 214 × 114 × 79 cells,
representing approximately 5.78 × 106 degrees of freedom. The
transmitter is an x-oriented horizontal electric dipole with a fre-
quency of 0.25 Hz and located 30 m above the seabed.
The solution of the resulting linear system was computed using

eight nodes, each having sixteen cores and 128 GB of memory. The

total simulation time was 18,171 s. The memory allocated at each
processor was of approximately 4.4 GB. The 3D simulation results,
obtained through the FDFD method, are compared with reference
fields calculated using a semianalytical plane-layer method (Løseth
and Ursin, 2007). The air conductivity is set to zero in the semi-
analytical calculations. Figure 6 shows the amplitude and phase re-
sponses for the x and z components of the electric fields along a
receiver line placed at the seabed. The solid lines and filled circles,
respectively, show results obtained with the FDFD and semianalyt-
ical methods. Except for the responses that are close to the trans-
mitter position, the field amplitudes differ at most by 1.0% and the
phases by at most by 0.8°. Note that the responses obtained with and
without the use of a Schur complement approach are identical;
we do not lose accuracy using Schur complement-based FDFD
approach.
The examples below illustrate the efficiency of our Schur com-

plement-based FDFD approach, but they also serve as validation
of our FDFD code for 3D models against fast FD time-domain
(FDTD) modeling code (Maaø, 2007; Mittet, 2010). Frequency-
domain fields are computed from the FDTD code using Fourier
transforms and then plotted together with results of FDFD code.

Deepwater controlled-source electromagnetic
inversion: Gulf of Mexico

In a marine environment, the depth profile of seawater conduc-
tivity is routinely measured using a conductivity-temperature-depth
(CTD) profiler during the acquisition of CSEM data. The CTDmea-
surements are usually done at different locations of the CSEM sur-
vey to learn how the seawater conductivity profile varies laterally.
As a result, the seawater conductivity distribution is known rather
accurately, and its variations in all three directions can be traced.
Therefore, it is common practice not to invert for the seawater re-
sistivities, in particular because inversion is usually faster with a
small number of unknowns. In addition, the resistivity of the air
layer is usually fixed to a sufficiently high value (in our case
107 Ωm), and small variations in it have almost no effect on the
computed EM fields. Therefore, it does not make any sense to invert
for the air layer resistivity either.
In deepwater environments, the thick air and seawater layer may

represent nearly half of the total computational domain. The number
of floating point operations required for factorization scales with the
matrix size as OðN2Þ. Because inversion requires many forward
simulations for different resistivity models, precomputing contribu-
tions from air and seawater in the form of a Schur complement can
lead to saving more than half of the time spent on forward
modeling.
Let us consider a realistic deepwater model based on a case of the

Perdido fold belt with northeast–southwest-trending anticlines in
deepwater (2.5−3.2 km) of the northwestern Gulf of Mexico. A
marine CSEM survey was carried out in 2008 with a base frequency
of 0.2 Hz, covering about 1000 km2 of the Alaminos Canyon and
targeting some petroleum prospects in the area. Part of the area was
later reacquired with higher frequencies (0.5, 1.5, 2.0, and 2.5 Hz)
to image more accurately the Wilcox discovery beneath shallow gas
hydrate (Kanhalangsy et al., 2011). Here, a total of 75 seabed
receivers were used to acquire CSEM data with a dense inline
receiver spacing of 0.5 and 1 km, respectively, near and far from
the area of interest and interline spacing of 4 km.
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The anisotropic 3D CSEM inversion is based on a quasi-Newton
update and is described by Zach et al. (2008). First, we perform
direct modeling in the reciprocal mode meaning that the receivers
become the computational transmitters and then adjoint modeling to
compute the gradients. At each iteration, this inversion requires
about 600 modeling jobs (four field components [Ex, Ey, Hx,
and Hy] × 2 [direct and adjoint modeling] × number of receivers)
with different transmitters for the same resistivity model. With a
direct solver, once the matrix is factorized, responses for all trans-
mitters are obtained using local backward-forward substitutions.
The time spent for backward-forward substitutions is nearly the
same with and without the use of a Schur complement approach.
Start models for CSEM inversion of the reacquired data based on

the geologic horizons are shown in Figure 7 for horizontal and
vertical resistivity. The seawater resistivities vary in the range
0.2−0.3 Ωm, and the background horizontal and vertical resistivities
vary in the ranges 1.0−2.0 Ωm and 1.5−2.5 Ωm, respectively. The
dimension of the FD grid model is 20 × 18 × 6.5 km3 and was dis-
cretized with grid spacings of 400 m in the x- and y-directions and
50 m in the z-direction. The resistivity models include an air layer
above the seawater and are padded with seven nonuniform cells at the
remaining five sides as in the layered earth model example (these
additional layers are not shown in Figure 7). The discretization of
the FD grid model results in 65 × 60 × 153 cells, representing ap-
proximately 1.79 × 106 degrees of freedom. The transmitter is an
x-oriented horizontal electric dipole placed 30 m above the seabed
and has a base frequency of 0.5 Hz.
The simulations using standard FDFD and Schur complement-

based FDFD approaches were performed using four computational
nodes, each having 16 cores and 128 GB of memory. The Schur
interface was defined in the x‐y-plane at 2.5 km
below the sea surface (the white dashed line in
Figure 7) for the Schur complement-based FDFD
approach. This results in 65 × 60 × 66 cells
in the background and 65 × 60 × 87 cells in
the anomalous subdomains. All unknowns above
the Schur interface are eliminated, and their
contributions at the Schur interface are obtained
via the Schur complement. Higher frequencies
1.5, 2.0, and 2.5 Hz were also used in simula-
tions on the same grid to see the performance
of our approach for different system matrices
M (even though for accurate inversions at
higher frequencies, one would normally need
a finer grid). Figure 8 shows the amplitude
and phase response curves for the x component
of the electric field along a receiver line at y ¼ 0

placed on the seabed. The solid lines represent
the 3D FDFD method, and the filled circles
represent the 3D FDTD method. The relative er-
ror among these two approaches always stays
within 1.0%.
Anisotropic 3D CSEM inversion for this data

set required approximately 140 iterations over
earth models with different background and
target resistivities to converge to a good final
model (C. Kanhalangsy, personal communica-
tion, 2013). Table 1 shows the memory and
run time for the modeling jobs run by inversion

using FDFD with and without the Schur complement approach.
Numbers in Table 1 are for one frequency only, whereas numbers
for other frequencies follow a very similar trend (as expected for a
direct solver). Furthermore, note that the number of unknowns
when computing the Schur complement is less than the total number
of unknowns in the model; this is because we consider only those
nodes that are in the background subdomain, Schur interface, and
two layers of anomalous cells below the Schur interface when com-
puting the Schur complement of the background subdomain.
For each frequency, the standard FDFD method took 3548 s to

factorize the system matrixM and 1297 s for the backward-forward
substitutions to compute the responses for all 600 computational
transmitters, whereas the Schur complement approach took 1747 s
to compute the Schur complement S by partial factorization of M,

Figure 5. Vertical cross section through the layered earth model
used for comparison with plane-layer solutions.

Figure 6. Comparison of electric field responses at 0.25 Hz for the layered earth model
in Figure 5 calculated using our FDFD approach (solid lines) and the plane-layer mod-
eling of Løseth and Ursin (2007) (filled circles). The field responses are plotted along a
receiver line placed at the seabed.
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203 s to compute intermediate vector y using forward substitutions,
2070 s to factorize S, 584 s to compute anomalous subdomain fields
xa using substitutions, and 509 s to compute background subdo-
main fields xb using backward substitutions. For the first iteration,
modeling jobs take 1747þ 203þ 2070þ 584þ 509 ¼ 5113 s us-
ing the Schur complement-based FDFD approach, making it slower
than the standard FDFD approach that takes 3548þ 1297 ¼
4845 s. However, for multimodel simulations, the situation is differ-
ent because the Schur complement and intermediate vector only
need to be computed once. Every subsequent run of the Schur com-
plement-based FDFD approach needs only the time to factorize S
and the time to compute xa and xb using substitutions, i.e., 2070þ
584þ 509 ¼ 3163 s to simulate CSEM responses for the entire
model with all computational transmitters. Therefore, the total mod-
eling time for the entire CSEM inversion requiring 140 iterations
would then be ð1747þ203þ140× 3163Þ s¼444;770s≈5.1days

with the Schur complement approach as compared with 140×
4845 s ¼ 678;300 s ≈ 7.9 days with standard FDFD modeling.
We have analyzed how the total modeling times scale with the

number of iterations and transmitters (see Figure 9). Figure 9a
shows a plot of modeling times as a function of the number of iter-
ations for a constant number of transmitters (600), whereas Fig-
ure 9b shows a plot of modeling times as a function of the
number of transmitters for a constant number of iterations (140).
From these plots, we observe that for a realistic CSEM inversion
— assuming around 100 iterations with a few hundred transmitters

— one can save up to about 35%–40% of the total modeling times
using the Schur complement-based FDFD approach.

Focused inversion: Troll oil field

The Troll field, which is the biggest gas field in the North Sea,
also has oil in a thin zone under the gas trap. The field extends over
three fault blocks tilted east and is subdivided into Troll East, the
Troll West Gas Province, and the Troll West Oil Province (TWOP)
(Mikkelsen et al., 2005). The TWOP is a smaller (25 km2) segment
of the reservoir in which the oil column has a thickness of 15–27 m.
A 3D marine CSEM survey over the Troll oil field was acquired in
2008 as part of R&D collaboration between Statoil and Electromag-
netic Geoservices (EMGS) (Gabrielsen et al., 2009).
For this producing field, abundant information about the back-

ground formation is available from seismic and well-log data.
One can use the background formation resistivities obtained from

Figure 8. The (a) amplitude and (b) phase responses of the x-com-
ponent of the electric field for the deepwater model from the Gulf of
Mexico (Figure 7) calculated using FDFD (solid lines) and FDTD
(filled circles) for the frequencies 0.5, 1.5, 2.0, and 2.5 Hz. The field
responses are plotted along a receiver line y ¼ 0 km placed on the
seabed.

Figure 7. (a) Horizontal and (b) vertical resistivity models from the
deepwater Gulf of Mexico used for synthetic simulations of CSEM
responses. The white dashed line shows the Schur interface placed
in the x‐y-plane at a depth of 2.5 km below the sea surface.
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the well-log data interpretations and the fine-scaled structural infor-
mation obtained from the seismic data interpretations. A focused
CSEM inversion, in which only the target reservoir resistivities
are allowed to change while other resistivities are kept constant,
can then be a good choice. In the following paragraphs, we will
compare the modeling time required for running such an inversion
using FDFD modeling with and without the Schur complement
approach.
We took the same resistivity model used by Morten et al. (2012)

in which CSEM data from 54 seabed receivers were inverted to ob-
tain the distribution of hydrocarbon saturation in the TWOP reser-
voir. Figure 10 shows the 3D cubes of horizontal and vertical
resistivities obtained at intermediate steps of this anisotropic 3D
CSEM inversion. The resistivity of the seawater is 0.27 Ωm; the
background horizontal resistivities vary from 1.5 Ωm in the shallow
part to 2.1−2.3 × Ωm below 2000 m depth. The background ver-
tical resistivities vary in the range 2.1−4.5 Ωm. The horizontal and
vertical resistivities within the target reservoir vary in the ranges
23.0−30.0 Ωm and 65.0−80.0 Ωm, respectively. The FD grid
model has a dimension of 20 × 12 × 3.5 km3 and was discretized
with grid spacings of 200 m in the x- and y-directions and 30 m
in the z-direction. The resistivity models include an air layer and
are padded with seven nonuniform cells as in the case of the layered
earth model example. The discretization of the FD grid model results
in 115 × 75 × 140 cells, representing approximately 3.62 × 106 de-
grees of freedom. The transmitter is an x-oriented horizontal electric
dipole placed 30 m above the seabed; the operating frequencies of the
transmitter are 0.25, 0.75, and 1.25 Hz. Figure 11 shows the ampli-
tude and phase responses of the x-component of the electric field
along a receiver line at y ¼ 3 km on the seabed. The solid lines
are for the FDFDmethod and the filled circles for the FDTD method.
The relative error among the two stays within 1.5%.
The computational resources used for the standard FDFD simula-

tions and the Schur complement-based FDFD simulations were the
same as those for the layered earth model example. For simulations
based on the Schur complement approach, we defined the Schur in-
terface on the boundary of an approximately 8 × 5 × 0.3 km3 volume

Table 1. Memory requirements and observed run time per frequency for performing CSEM modeling with and without the
Schur complement approach for the deepwater model from the Gulf of Mexico in Figure 7. CSEM modeling is performed for
600 computational transmitters. Here N is the number of unknowns, NNZ the number of nonzero coefficients, Mf (GB) the total
amount of memory used during factorization, Mp (GB) the peak memory at one of processors needed to store matrix S, Tf (s)
the factorization time, and Ts (s) the backward or forward substitution time for 600 right-hand sides (RHSs). The column
labeled T (days) shows the projected total modeling time per frequency for a CSEM inversion requiring 140 iterations. Use of
the Schur complement-based approach reduces this time by approximately 35%.

Standard FDFD modeling

N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) T (days)

1,790,100 22,995,556 143 3 3548 1297 ∼7.9

Schur complement-based FDFD modeling

Compute S by partial factorization of M Compute y Compute xa by solving Sxa ¼ ya Compute xb

T (days)N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) Ts (s)

807,300 10,368,263 92 26 1747 203 1,017,900 73,841,972 109 2 2070 584 509 ∼5.1

Figure 9. (a) Plots showing the influence of the number of itera-
tions and (b) the number of transmitters on the total modeling times
for a CSEM inversion. The Schur complement-based FDFD (solid
line) provides a significant reduction of the total modeling time as
compared with standard FDFD (dashed line) unless the number of
iterations is too small or number of transmitters is too large. The
plots were generated for the deepwater model from the Gulf of
Mexico.
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surrounding the TWOP (see the black dashed line in Figure 10). This
results in 41 × 27 × 9 cells in the anomalous subdomain. All un-
knowns outside this volume are eliminated, and their contributions
at the Schur interface are obtained via the Schur complement. Instead
of defining the Schur interface as a cuboid, one could have used an
irregular body conforming more closely to the TWOP shape. The
advantages of using a cuboid are that it is easier to define and that
the number of unknowns at the Schur interface is smaller. Note that
this choice of anomalous subdomain does not affect the inversion
results because one can limit inversion updates to a smaller volume
within the cuboid, e.g., to the volume of reservoir.
The previously mentioned anisotropic CSEM inversion over this

data set took about 120 iterations; at each iteration, this inversion
requires about 432 modeling jobs with different computational
transmitter positions and/or orientations per earth resistivity model.
Table 2 shows the memory requirements and run time for CSEM
modeling using FDFD with and without the Schur complement ap-
proach for one frequency (the memory and run time for other
frequencies are very similar). This time the number of unknowns
in computing the Schur complement is the same as the total number
of unknowns in the system. This means that we considered all nodes
for computing the Schur complement as opposed to the deepwater
Gulf of Mexico example case in which only Schur interface nodes
and its close neighbors were chosen from the anomalous nodes,

whereas other interior anomalous nodes were excluded. The reason
is that the anomalous subdomain in this case is so small that the full
Schur matrix S occupies relatively little memory anyway.
For each frequency, the standard FDFD method took 10,555 s to

factorize the system matrixM and 1770 s for the backward-forward
substitutions to compute CSEM responses for all 432 computational
transmitters, whereas the time required to compute the Schur com-
plement S and intermediate vector y was, respectively, 11,770 and
724 s, computation of anomalous subdomain fields xa by solving
the Schur complement system required 773 s to factorize S and 76 s
for the substitutions, and computation of background subdomain
fields xb required 1687 s. This is a very encouraging result for mul-
timodel simulations, in which the Schur complement approach thus
took only 773þ 76þ 1687 ¼ 2536 s, which is about 20% of the
standard FDFD time (10; 555þ 1770 ¼ 12; 325 s) to simulate
CSEM responses for each successive model. Therefore, in the entire
CSEM inversion requiring 120 iterations, the total modeling time
with the Schur complement approach was only ð11; 770þ 724þ
120 × 2536Þ s ¼ 316; 814 s ≈ 3.7 days as compared with standard

Figure 10. (a) Horizontal and (b) vertical resistivity models from
the Troll field area in the North Sea used for synthetic simulations
of CSEM responses for the focused inversion case. The black
dashed line shows the Schur interface that defines a block of dimen-
sion 8 × 5 × 0.4 km3 containing the TWOP reservoir.

Figure 11. The (a) amplitude and (b) phase responses of the x com-
ponent of the electric field for the Troll field model (Figure 10) com-
puted using FDFD (solid lines) and FDTD (filled circles) for the
frequencies 0.25, 0.75, and 1.25 Hz. The field responses are plotted
along a receiver line y ¼ 3 km placed on the seabed.
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FDFD modeling that took 120 × 12; 325 s ¼ 1; 479; 000 s ≈
17.1 days. Note that it takes a relatively long time (773 s) to fac-
torize the Schur complement matrix because it has a very dense
block corresponding to unknowns located at the Schur interface.
The influence that the number of iterations and the number of

transmitters have on the total modeling time is shown in Figure 12.
Figure 12a shows a plot of modeling times versus number of iter-
ations while keeping number of transmitters fixed to 432, whereas
Figure 12b shows a plot of modeling times versus number of trans-
mitters while keeping number of iterations fixed to 120. For a real-
istic CSEM inversion, the savings in modeling time can be of up to
70%–80% using the Schur complement approach.
Figures 9 and 12 also indicate that if the number of transmitters is

of the order of few thousand, the gain would be reduced to 20%–
30% and 40%–50%, respectively, for the Gulf of Mexico and Troll
field models. The reason for this reduction is the fact that backward-
forward substitutions time would then increase and become com-
parable with factorization time.

DISCUSSION

We have presented an efficient way of performing multimodel
simulations using a Schur complement-based FDFD approach.
When used as a forward modeling engine to perform constrained
3D CSEM inversion, it allows for significant run time savings.
In the previous section, we demonstrated that one can save up to
35%–40% of the modeling time in the CSEM inversion for deep-
water environments when the seawater and air layer resistivities are
constrained. We performed similar tests for shallower water: for sea-
water depth in the range of 800 to 1500 m, the gain turned out to be
approximately 20%–30%, which still is considerable. The Troll
field example has shown that the gain can be enormous for the fo-
cused inversion case — up to 70%–80% of the modeling time in
the CSEM inversion depending on the relative sizes of the con-
strained and unconstrained volumes. If the unconstrained volume
is small, the IE method has been considered as the best forward
modeling tool for such inversions. Our results demonstrate that sim-
ilar computational advantage can be achieved also in the framework
of FDFD method by using the Schur complement approach.
Another possible application of the Schur complement-based

FDFD method is postinversion modeling. Inversion results are non-

unique; there always exists a set of different resistivity models that
can explain the measured EM responses. Therefore, one often per-
forms postinversion modeling to test different geologic scenarios, in

Table 2. Memory requirements and observed run time per frequency for performing CSEM modeling with and without the
Schur complement approach for the model from the Troll field in Figure 10. CSEM modeling is performed for 432
computational transmitters. The same nomenclature as in Table 1 is used except that the number of RHSs here is 432. The
column labeled T (days) shows the projected total modeling time per frequency for a CSEM inversion requiring 120 iterations.
Use of the Schur complement-based approach reduces this time by approximately a factor of 5.

Standard FDFD Modeling

N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) T (days)

3,622,500 46,670,460 390 4 10,555 1770 ∼17.1

Schur complement-based FDFD modeling

Compute S by partial factorization of M Compute y Compute xa by solving Sxa ¼ ya Compute xb

T (days)N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) N NNZ Mf (GB) Mp (GB) Tf (s) Ts (s) Ts (s)

3,622,500 46,670,460 403 20 11,770 724 29,889 64,158,115 59 2 773 76 1687 ∼3.7

Figure 12. (a) Plots showing the influence of the number of iter-
ations and (b) the number of transmitters on the total modeling
times for a CSEM inversion. The Schur complement-based FDFD
(solid line) provides a significant reduction of the total modeling
time as compared with standard FDFD (dashed line) unless the
number of iterations is too small or number of transmitters is
too large. The plots were generated using the Troll field model.
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particular, to correct for uncertainties in the thickness and depth
placement of the reservoir (Mittet et al., 2008; Fanavoll and Gabri-
elsen, 2012). Such postinversion modeling also requires many for-
ward modeling jobs in which only a relatively small portion of the
model is modified. The use of our Schur complement-based FDFD
approach here will certainly allow reducing computational expense.
In our suggested Schur complement approach, we have two ma-

trix equations 5 and 12. It is necessary to use direct solvers to com-
pute the Schur complement S of the background subdomain by
partially factorizing the system matrix M in equation 5 to be able
to reuse the factorization to perform multimodel simulations as ex-
plained earlier. The second system of linear equations Sxa ¼ ya can
be solved either by direct or iterative solvers, but only use of direct
solvers will allow one to handle multiple RHSs (many EM trans-
mitters) in one run.
As a final remark, note that Tables 1 and 2 show that computing

the Schur complement leads to an increased peak memory at one
processor. This is related to the fact that the Schur complement ma-
trix S has a dense block for the Schur interface unknowns and is
stored at one host only. To use this approach for a very large Schur
interface, one may need to distribute the Schur complement matrix
among different computational nodes.

CONCLUSIONS

We have presented an efficient algorithm for fast multimodel 3D
CSEM simulations using a Schur complement-based FDFD
scheme. This approach takes advantage of the fact that inversion
of CSEM data usually requires a large number of modeling jobs
on earth models having resistivities that only differ in a limited
anomalous subdomain. Although the standard FDFDmethod would
require repeating extensive forward modeling computations on the
entire earth model at every inversion iteration, using our Schur com-
plement-based FDFD approach the effect of the subdomain that re-
mains constrained across all earth models can be precomputed once
and for all, allowing for significant savings in computational com-
plexity. The results of this paper demonstrate that this approach is
extremely valuable for constrained inversions in which the resistiv-
ities in a large volume are kept constant throughout the inversion
process. In a deepwater setting in which the seawater and air layer
are constrained, the savings can amount to up to 35%–40% of the
modeling run-time, whereas for an inversion focused on the area
occupied by a hydrocarbon reservoir the savings can be even larger:
up to 80%.
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