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S U M M A R Y
We have developed an efficient numerical scheme for 3-D electromagnetic (EM) simulations
using an exponential finite-difference (FD) method with non-uniform grids. The method uses
the set of exponential basis functions {1, exp[±(νx x + νy y + νz z)]}, where the exponents
νx , νy and νz must be chosen carefully depending on the simulation frequency and local
node conductivity. The method achieves an approximation of the oscillatory and exponentially
decaying EM fields that is better than that obtained via the low-degree polynomial fitting from
standard FDs—and hence also leads to more accurate results. An important property of the
exponential FD method is that it tends to the standard FD method when the exponents νx ,
νy and νz tend to zero. We applied the standard and exponential FD methods to three marine
controlled-source EM modelling scenarios: deep-water, shallow-water and intermediate water
depth. For the deep-water scenario, we found that the proposed exponential FD method gave
two to three times more accurate results as compared to the standard FD method on the same
grid. For the shallow-water and intermediate water depth scenarios, the exponential FD method
improved the accuracy of the upgoing fields; it gave 2–2.5 times more accurate results for the
upgoing fields than the standard FD method on the same grid. Consequently, the method can
achieve the same accuracy with a coarser grid and hence is faster than the standard FD method,
as demonstrated using a frequency-domain iterative solver.

Key words: Numerical solutions; Numerical approximations and analysis; Electrical prop-
erties; Electromagnetic theory; Marine electromagnetics.

I N T RO D U C T I O N

Inversion and interpretation of electromagnetic (EM) data needs a fast and accurate forward modelling scheme to calculate the EM fields in
arbitrary conductivity structures. This requires solving Maxwell’s equations either in the time or transform (e.g. frequency) domain. Methods
for numerical modelling of EM fields include the finite-difference (FD), finite-volume (FV), finite-element (FE) and integral equation (IE)
methods (see e.g. Avdeev 2005; Zhdanov 2009; Börner 2010 for details). The FD and FE methods are the most popular methods; both these
methods deal directly with the partial differential equations (PDEs) that govern the physics of the EM problems. Since derivatives in PDEs
require only local information, the system matrix obtained by low-order discretization of the governing frequency-domain PDEs is sparse and
can be computed easily. This sparseness is vital to make the solvers—direct, iterative or hybrid—used to solve the system of linear equations
fast and efficient.

In the FD method, the fields and conductivities are sampled at the nodes of a finite grid. To obtain a solution of the governing PDEs,
the field derivatives are replaced by FDs. The standard FD method replaces these derivatives using truncated Taylor’s series expansion of the
fields with low-degree polynomials determined from the field values at a small number of neighbouring nodes. The truncation of Taylor’s
series is based on the basic assumption that the fields between the nodal points behave as smooth and low-degree polynomials. However, if
the fields have oscillatory, exponential, hyperbolic, singular, or other non-linear behaviours then this assumption requires a relatively fine grid
to obtain accurate results. An example of such fields is the solution of Maxwell’s equations, which has oscillatory and exponentially decaying
behaviours in the frequency domain.

Several methods have been suggested to get accurate results on coarser grids if the fields exhibit strongly non-linear behaviours. One
possibility is to use optimally refined non-uniform grid with coarsening of cell sizes away from the source. An example for an EM problem can
be found in Davydycheva et al. (2003), who use a spectrally optimal refined grid achieved through special aggressively increasing cell sizes
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outside the source–receivers domain, while keeping the same standard FD operator. This approach minimizes the error locally at the receivers
and optimizes the boundary conditions at infinity. A second possibility is to use a high-order FD method, which allows a more accurate
approximation of the derivatives in the PDEs. However, this increases the computational cost and complicates the algorithm. Moreover, if the
media parameters vary rapidly at the boundaries, the high-order FD approximations can actually increase the error (Taflove & Hagness 2005;
Symes et al. 2008).

A third possibility is to use an optimization procedure introduced by Holberg (1987) to compute the approximation coefficients of the
FD operator instead of using Taylor’s series, see for example Mittet (2010) for application to an EM problem. A fourth possibility is to
use non-standard FD methods that preserve the properties of the numerical solution(s) of the physical problem, see Mickens (2000, 2005),
Patidar (2005) and the references therein for details. These non-standard FD methods modify the FD operator according to the behaviours of
the fields. Cole & Banerjee (2003) have introduced a non-standard FD operator for time-domain Maxwell’s equations in a linear conducting
media having no electric or magnetic current source. To get this non-standard FD operator, they use a correction function (some complex
function of cell size) in the denominator of the FD approximation of derivatives instead of using simple monomials of cell size as in the
standard FD method, and determine this correction function based on the oscillatory and exponentially decaying behaviours of the EM fields.
They demonstrate good improvements in the accuracy by using this non-standard FD operator.

In this paper, we present a novel approach—the exponential FD method—for 3-D EM modelling with non-uniform grids. The method
modifies the FD operator according to the EM field behaviour. In this method, the fields between the nodal points are locally approximated
using the set of exponential basis functions {1, exp[±(νx x + νy y + νz z)]}, where νx , νy and νz are complex exponents. The method follows the
work done on exponential fitting of derivatives by Ixaru (1997) and Ixaru & Berghe (2004) using uniform grids and by Ray (2011) and Jaysaval
(2012), respectively, for 1-D and 2-D magnetotelluric (MT) modelling using non-uniform grids. We extend the theory and application of the
exponential FD method to the 3-D EM case and to non-uniform grids. The method handles better the oscillatory and exponentially decaying
behaviours of the EM fields and provides more accurate results as compared to the standard FD method on the same grid. Furthermore,
the exponential FD method requires unknown exponent parameters νx , νy and νz that need to be chosen properly in accordance with the
characteristics of the fields. We choose near-optimal values of these exponents based on the simulation frequency and local node conductivity.
An important property of the exponential FD method is that it tends to the standard FD method when the exponents νx , νy and νz tend to zero
(e.g. if either frequency or conductivity tends to zero)—which enables us to say that the exponential FD method is a natural extension of the
standard FD method. We restrict the FD approximations to second-order because it is the simplest to illustrate the efficiency of exponential
FD method against the standard FD method. High-order approximations can be constructed using second-order approximations as a base, but
this is beyond the scope of this paper.

In the next sections, we first briefly describe frequency-domain EM modelling with the standard FD method. This is followed by the
theory of the exponential FD method: we derive exponential FD approximations to the second-order derivatives, and thereafter describe the
selection of values for the exponents νx , νy and νz . We then derive expressions for the truncation errors in the standard and exponential
FD methods and compare the two for the special case of a broadside electric field in a uniform homogeneous medium, having a behaviour
which is typical for CSEM. We subsequently compare the efficiency of the standard and exponential FD methods for deep-water marine
controlled-source electromagnetic (CSEM) models. We then move to shallow-water and intermediate water depth examples, where efficiency
comparisons are first made for the total electric field and then for the upgoing component of the electric field, obtained using up-down
decomposition (Amundsen et al. 2006; Nordskag & Amundsen 2007). The reason for this decomposition is to exclude the downgoing
airwave, which has little value for CSEM applications and propagates mostly through the non-conductive air, where the accuracy of both FD
methods is almost identical. Finally, we draw some concluding remarks.

F D E M M O D E L L I N G S C H E M E

If the temporal dependence of EM fields is e−iωt , where i = √−1, then the frequency-domain Maxwell equations are given by

∇ × E (r) = iωμH (r) , (1)

∇ × H (r) = σ̄ (r) E (r) − iωεE (r) + J (r) , (2)

where r is the position vector, E and H are, respectively, the electric and magnetic fields, J is the electric current source, ω is the angular
frequency, and μ and ε are, respectively, the magnetic permeability and dielectric permittivity. The value of μ is assumed to be constant and
equal to the free space value μ0 = 4π × 10−7H/m. σ̄ (r) is the electric conductivity tensor and can vary in all the three dimensions. In a
triaxial anisotropic medium, σ̄ (r) takes the form

σ̄ (r) =

⎡
⎢⎢⎣

σx (r) 0 0

0 σy (r) 0

0 0 σz (r)

⎤
⎥⎥⎦ , (3)

where σx and σy are the horizontal conductivities and σz represents vertical conductivity.
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Figure 1. The staggered Yee grid used to define the positions of the electric and magnetic field nodes. The electric and magnetic field components are assigned
to cell edges and faces, respectively.

By taking the curl of eq. (1) and substituting eq. (2), we obtain

∇ × ∇ × E (r) − iωμσ̄ (r) E (r) − ω2μεE (r) = iωμJ (r) . (4)

Because in the CSEM method one generally uses low frequencies, in the range from 0.1 to 10 Hz, the displacement current can be neglected
for typical depositional materials as σi (r)/(ωε) � 1, for i = x, y and z. Therefore, eq. (4) can be rewritten as

∇ × ∇ × E (r) − iωμσ̄ (r) E (r) = iωμJ (r) . (5)

Using the definition of the curl operator in eq. (5), we obtain

∂y∂x Ey (r) − ∂2
y Ex (r) − ∂2

z Ex (r) + ∂z∂x Ez (r) − iωμσx (r) Ex (r) = iωμJx (r) , (6)

∂z∂y Ez (r) − ∂2
z Ey (r) − ∂2

x Ey (r) + ∂x∂y Ex (r) − iωμσy (r) Ey (r) = iωμJy (r) , (7)

∂x∂z Ex (r) − ∂2
x Ez (r) − ∂2

y Ez (r) + ∂y∂z Ey (r) − iωμσz (r) Ez (r) = iωμJz (r) . (8)

Eqs (6)–(8) are second-order PDEs and form the basis for our frequency-domain CSEM modelling scheme. The domain boundaries are
assumed to be located sufficiently far from the transmitter for EM fields to have negligible values. Therefore, we impose Dirichlet boundary
conditions by setting the electric field values to zero at all outer boundaries of the computational domain.

To obtain a solution of the Helmholtz eq. (5), PDEs (6)–(8) are discretized on a staggered Yee grid (Yee 1966) following the approach
of Newman & Alumbaugh (1995). We place the electric and magnetic field components, respectively at the edges and the faces of each
cell (Fig. 1). For a cell with the main node (xi , y j , zk) located at the top left corner and �xi , �y j and �zk being, respectively, the length,
width and height of this cell, the x-, y- and z-components of the electric field are located at (xi + �xi

2 , y j , zk), (xi , y j + �y j

2 , zk) and

(xi , y j , zk + �zk
2 ), respectively. In the same cell, the x-, y- and z-components of the magnetic field are located at (xi , y j + �y j

2 , zk + �zk
2 ),

(xi + �xi
2 , y j , zk + �zk

2 ) and (xi + �xi
2 , y j + �y j

2 , zk), respectively. The discrete FD approximations to eq. (5) are given in appendix A of
Newman & Alumbaugh (1995). For convenience, we list here the standard FD approximations of one second-order non-mixed derivative
∂2

y Ex (r) and one second-order mixed derivative ∂y∂x Ey(r) at (xi + �xi
2 , y j , zk) on the staggered grid;

∂2 Ex (x, y, z)

∂ y2

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�y j−1�y j

[
�y j−1

�ys j
E x

i+ 1
2 , j+1,k

− 2E x
i+ 1

2 , j,k
+ �y j

�ys j
E x

i+ 1
2 , j−1,k

]
, (9)

∂2 Ey (x, y, z)

∂y∂x

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�xi�ys j

[
E y

i+1, j+ 1
2 ,k

− E y

i+1, j− 1
2 ,k

− E y

i, j+ 1
2 ,k

+ E y

i, j− 1
2 ,k

]
, (10)

where �ys j = 1
2 (�y j−1 + �y j ). Here, the values of Ex at the nodes are indexed as E x

i+ 1
2 , j+1,k

≡ Ex (xi + �xi
2 , y j + �y j , zk) and so on.

The conductivity within each cell is assumed to be uniform. The FD discretization requires knowledge of conductivity values at each
electric field node (halfway along a given cell edge). At these locations, the conductivity could be discontinuous since it often varies from
cell to cell, and hence a proper conductivity averaging is required. We use the averaging method described in Taflove & Hagness (2005,
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p. 492) for this purpose. For example, the x-staggered averaged conductivity at (xi + �xi
2 , y j , zk) is obtained using an area-weighted averaging

of the conductivity of four adjacent cells (i, j, k − 1), (i, j, k), (i, j + 1, k − 1) and (i, j + 1, k):

σ̃ x
i+ 1

2 , j,k
=
∑1

l=0

∑0
m=−1 �y j+l�zk+mσ x

i, j+l,k+m∑1
l=0

∑0
m=−1 �y j+l�zk+m

, (11)

where σ x
i, j+l,k+m is the x-conductivity of the (i, j + l, k + m)th cell. The y- and z-staggered averaged conductivities are computed is a similar

way. There are also advanced averaging formulas, for example the one presented in Davydycheva et al. (2003) for cases that are more
complicated, for example if one wants to perform coarse grid modelling from a finely discretized model or a model that has tilted anisotropy.
However, for the simple models presented in this paper both methods give identical results.

Sharp variations of conductivity also lead to discontinuities in EM fields and its derivatives, which is especially important for marine
CSEM where a current source and recording stations are usually located close to the seafloor that separates conductive water and resistive
formation. We use interpolation operators derived in Shantsev & Maaø (2015) that take a detailed account of these discontinuities for an
arbitrary dipping angle of the seafloor.

System matrix and solution

The FD discretization of eqs (6)–(8) forms a system of linear equations

Mx = s, (12)

where M is the system matrix of dimension 3N × 3N for a modelling grid with N = Nx × Ny × Nz cells, x is a vector of dimension 3N
containing unknown electric field components Ex , Ey and Ez , and s (dimension 3N ) is the source vector resulting from the right hand side
of eq. (5). The matrix M is a sparse complex matrix, having up to 13 non-zero elements in a row. Note that though the fields at the outer edges
are zero due to Dirichlet boundary conditions, we consider the fields as unknowns at one of the two outer edges in each direction so that the
total number of unknowns remains 3N .

The matrix eq. (12) is very large for typical CSEM simulations; and involves several hundred thousand to a few million cells. Such a
matrix equation can be solved by efficient direct, iterative, or hybrid solvers. Examples of modelling results obtained with a direct solver
can be found in, for example Streich (2009), da Silva et al. (2012) and Jaysaval et al. (2014). All modelling results presented in this paper
were obtained using an iterative solver to solve the matrix equation. This iterative solver is mainly based on the ideas presented by Mulder
(2006): a complex biconjugate-gradient-type method, for example BICGStab (van der Vorst 1992), is used in combination with a multigrid
preconditioner and a block Gauss–Seidel smoother. The Gauss–Seidel smoother is necessary because of the large null-space of the curl–curl
operator in 3-D. Finally, after computing the electric field by solving the matrix eq. (12), Faraday’s law (eq. 1) is used to calculate the magnetic
field.

E X P O N E N T I A L F D M E T H O D

The standard FD approximation, based on truncated Taylor’s series expansions, is good when the fields can be approximated by low-degree
polynomials between the nodal points. In a situation where the fields are a weighted sum of oscillatory, exponential, or hyperbolic components,
one would expect the standard FD method to be accurate only when the nodes are spaced sufficiently closely for the fields to behave as
low-degree polynomials in between. The exponential FD method deals with such a class of fields by approximating them using exponential
basis functions rather than simple low-degree polynomials between the nodes. Since the EM fields have oscillatory and exponentially decaying
behaviours, the exponential FD method should give more accurate results than the standard FD method on a given grid.

Eqs (6)–(8) show that to define an exponential FD scheme, we need to compute exponential FD approximations to the second-order
derivatives with respect to (a) one single variable [non-mixed derivatives, e.g. ∂2

y Ex (r)] and (b) two variables [mixed derivatives, e.g.
∂y∂x Ey(r)]. In the following paragraphs we derive exponential FD approximations to ∂2

y Ex (r) and ∂y∂x Ey(r), and then extend the results to
obtain an exponential FD approximation to the Helmholtz equation.

Ixaru (1997) and Ixaru & Berghe (2004) have described a procedure to obtain exponential FD approximations of derivatives for uniform
grid discretization, and later Ray (2011) and Jaysaval (2012) gave procedures, respectively, for 1-D and 2-D non-uniform grid discretization.
We follow Jaysaval (2012) to obtain exponential FD approximations of derivatives for a 3-D non-uniform grid discretization.

Let the second-order exponential FD approximation of ∂2
y Ex (r) at (xi + �xi

2 , y j , zk) on the staggered grid be expressed as

∂2 Ex (x, y, z)

∂ y2

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�y j−1�y j

[
a1 E x

i+ 1
2 , j+1,k

+ a2 E x
i+ 1

2 , j,k
+ a3 E x

i+ 1
2 , j−1,k

]
, (13)

with the set of unknown coefficients a ≡ [a1, a2, a3]. To obtain these coefficients, we define an operator L2y[�y j−1, �y j , a] as

L2y

[
�y j−1, �y j , a

]
Ex (r)= ∂2 Ex (x, y, z)

∂ y2

∣∣∣∣
i+ 1

2 , j,k

− 1

�y j−1�y j

[
a1 E x

i+ 1
2 , j+1,k

+ a2 E x
i+ 1

2 , j,k
+ a3 E x

i+ 1
2 , j−1,k

]
. (14)
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The operator L2y[�y j−1,�y j , a] measures the misfit between the approximation in eq. (13) and the corresponding exact quantity. Our
main objective is to determine a set of coefficients a ≡ [a1, a2, a3] such that L2y[�y j−1, �y j , a]Ex (r) = 0; indicating that the approximation
in eq. (13) would be appropriate. In exponential FD, the field Ex (r) between the nodal points is assumed to consist of some combination
of exponential basis functions {1, exp[±(νx x + νy y + νz z)]}. Values for the set of coefficients a ≡ [a1, a2, a3] are obtained in Appendix A
(eqs A1–A14) by solving L2y[�y j−1, �y j , a]1 = 0 and L2y[�y j−1,�y j , a] exp{±(νx x + νy y + νz z)} = 0, and are also reproduced here for
convenience;

a1 = ν2
y�y j−1�y j[{

η−1

(
νy�y j

)− 1
}+ {η−1

(
νy�y j−1

)− 1
} �y j

�y j−1

η0(νy�y j )
η0(νy�y j−1)

] , (15)

a3 = �y j

�y j−1

η0

(
νy�y j

)
η0

(
νy�y j−1

)a1, (16)

a2 = −a1 − a3, (17)

where η−1(νy�y) = 1
2 [exp(νy�y) + exp(−νy�y)] and η0(νy�y) = 1

2νy�y [exp(νy�y) − exp(−νy�y)].

Now consider the mixed derivative ∂y∂x Ey(r) at (xi + �xi
2 , y j , zk) on the staggered grid

∂2 Ey (x, y, z)

∂y∂x

∣∣∣∣
i+ 1

2 , j,k

= ∂

∂y

[
∂ Ey (x, y, z)

∂x

]
i+ 1

2 , j,k

= ∂

∂x

[
∂ Ey (x, y, z)

∂y

]
i+ 1

2 , j,k

. (18)

To obtain an exponential FD approximation of ∂y∂x Ey(r), we first compute an approximation for ∂ Ey (x,y,z)
∂x |i+ 1

2 , j,k followed by one for
∂ Ey (x,y,z)

∂y |i+ 1
2 , j,k using exponential basis function of the form exp{±(νx x + νy y + νz z)}.

Let

∂ Ey (x, y, z)

∂x

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�xi

{
b1 E y

i+1, j,k + b2 E y
i, j,k

}
, (19)

and

∂ Ey (x, y, z)

∂y

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�ys j

{
c1 E y

i+ 1
2 , j+ 1

2 ,k
+ c2 E y

i+ 1
2 , j− 1

2 ,k

}
, (20)

with the set of unknown coefficients b ≡ [b1, b2] and c ≡ [c1, c2]. To obtain these coefficients, we define operators L1x [�xi , b] and
L1y[�y j−1,�y j , c] as

L1x [�xi , b] Ey (r) = ∂ Ey (x, y, z)

∂x

∣∣∣∣
i+ 1

2 , j,k

− 1

�xi

{
b1 E y

i+1, j,k + b2 E y
i, j,k

}
, (21)

and

L1y

[
�y j−1, �y j , c

]
Ey (r) = ∂ Ey (x, y, z)

∂y

∣∣∣∣
i+ 1

2 , j,k

− 1

�ys j

{
c1 E y

i+ 1
2 , j+ 1

2 ,k
+ c2 E y

i+ 1
2 , j− 1

2 ,k

}
. (22)

Values for the coefficients b ≡ [b1, b2] and c ≡ [c1, c2] are determined in Appendix A (eqs A15–A39) by solving
L1x [�xi , b] exp{±(νx x + νy y + νz z)} = 0 and L1y[�y j−1, �y j , c] exp{±(νx x + νy y + νz z)} = 0, and are also reproduced here for con-
venience;

b1 = −b2 = 1

η0

(
νx

�xi
2

) , (23)

and

c1 = 2�ys j⎡
⎣�y jη0

(
νy

�y j

2

)
+ �y j−1η0

(
νy

�y j−1

2

) η−1

(
νy

�y j
2

)

η−1

(
νy

�y j−1
2

)
⎤
⎦

, (24)

c2 = −
η−1

(
νy

�y j

2

)
η−1

(
νy

�y j−1

2

) c1. (25)

Therefore,

∂2 Ey (x, y, z)

∂y∂x

∣∣∣∣
i+ 1

2 , j,k

= ∂

∂y

[
∂ Ey (x, y, z)

∂x

]
i+ 1

2 , j,k

(26)
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≈ ∂

∂y

[
1

�xi

{
b1 E y

i+1, j,k + b2 E y
i, j,k

}]
(27)

≈ 1

�xi

⎡
⎣b1

⎧⎨
⎩

c1 E y

i+1, j+ 1
2 ,k

+ c2 E y

i+1, j− 1
2 ,k

�ys j

⎫⎬
⎭+ b2

⎧⎨
⎩

c1 E y

i, j+ 1
2 ,k

+ c2 E y

i, j− 1
2 ,k

�ys j

⎫⎬
⎭
⎤
⎦ (28)

≈ 1

�xi�ys j

[
b1c1 E y

i+1, j+ 1
2 ,k

+ b1c2 E y

i+1, j− 1
2 ,k

+ b2c1 E y

i, j+ 1
2 ,k

+ b2c2 E y

i, j− 1
2 ,k

]
. (29)

We similarly compute exponential FD approximations for all the remaining second-order derivatives in the PDEs (6)–(8). An important
property of the exponential FD approximation is that in the limiting case when the exponents vx , vy and vz tend to zero (e.g. if either frequency
or conductivity tends to zero), it tends to the standard FD approximation. This is proved in Appendix B. This fact allows us to say that the
exponential FD approximation represents a natural extension of the low-degree polynomial-fitting based standard FD approximation.

Choice of exponents

A significant point of discussion in the development of the exponential FD method is the choice of the unknown exponents νx , νy and νz in
the basis functions exp{±(νx x + νy y + νz z)}. It is reasonable to expect that the best results will be obtained if the values of the exponents are
chosen in accordance with the characteristics of the EM fields. Solution of the Maxwell’s equations for a plane wave in a conducting medium
is described by the factor eikr , where r is a distance and k = (1 + i)

√
μωσ/2 is the wavenumber. For a more complicated case, for example

a dipole source as in CSEM, the EM fields are proportional to eikr with additional rational expression weights (Ward & Hohmann 1988). In
CSEM, for most relevant values of r , the factor eikr dominates the spatial dependence. This leads us to the following choice of the values of
the exponents depending on the simulation frequency and conductivity of each node: vx = vy = vz = ±(1 − i)

√
μωσx/2 for all derivatives

in the x-projection (6), vx = vy = vz = ±(1 − i)
√

μωσy/2 for all derivatives in the y-projection (7) and vx = vy = vz = ±(1 − i)
√

μωσz/2
for all derivatives in the z-projection (8), of the Helmholtz equation.

Another alternative would be to use vx = ±(1 − i)
√

μωσx/2 for all the x-derivatives, vy = ±(1 − i)
√

μωσy/2 for all the y-derivatives,
and vz = ±(1 − i)

√
μωσz/2 for all the z-derivatives of the EM fields. However, our experience from exhaustive experiments on several

different models indicates that the first choice gives better results. This could be due to a fact that the x-projection of the Helmholtz
equation contains the x-directed conduction current σx Ex , hence σx may control the field derivatives better than the other two, σy and σz .
Correspondingly, for the y- and z-projections of the Helmholtz equation.

Using these values of the exponents and the exponential FD approximation of all the second-order derivatives, the resulting discrete
exponential FD formulation of eqs (6)–(8) on a staggered grid is given in Appendix C. The exponential FD approximation to the Helmholtz
equation is used to form a matrix equation similar to eq. (12). The elements of the main diagonal of matrix M in both the standard and
exponential FD methods are complex numbers. Off-diagonal elements of matrix M are real for the standard FD but complex for the exponential
FD method.

T RU N C AT I O N E R RO R O F F D A P P ROX I M AT I O N S

In this section, we analyse the accuracy of both FD approximations by considering its local truncation error, assuming a coordinate dependence
of the electric field that is typical for a homogenous conductive medium. In order to determine the expression for the truncation error for
FD approximations, we follow the procedures introduced in Ixaru (1997) for the uniform grids in 1-D. We extend these procedures to the
non-uniform grids for both non-mixed and mixed derivatives in 3-D. Using these procedures, the leading terms of the truncation error for the
standard FD approximation of ∂2

y Ex (r) and ∂y∂x Ey(r) are derived in Appendix D (eqs D1–D16, D23–D26 and D33). These leading terms
read

τ std
2y (r) = −1

3

(
�y j − �y j−1

)
∂3

y Ex (r) − 1

12

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂4

y Ex (r) , (30)

and

τ std
2xy (r) = −1

4

(
�y j − �y j−1

)
∂x∂

2
y Ey (r) − 1

24

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂x∂3

y Ey (r) − 1

24
�xi

2∂y∂
3
x Ey (r) , (31)

respectively, for ∂2
y Ex (r) and ∂y∂x Ey(r) at (xi + �xi

2 , y j , zk). We have also verified that these leading terms for the standard FD approximations
are exactly the same as the ones obtained using Taylor’s series expansion of the fields, see for example Ferziger & Perić (2002) and Lynch
(2005) for details to determine eqs (30) and (31) using Taylor’s series. From eqs (30) and (31), one can see that the truncation error is of
first-order for the non-uniform grid (i.e. �y j �= �y j−1) and second-order for the uniform grid; this is a well-known result (Monk & Süli
1994; Ferziger & Perić 2002).
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For the exponential FD approximations of ∂2
y Ex (r) and ∂y∂x Ey(r) at (xi + �xi

2 , y j , zk), the leading terms of the truncation errors are
also derived in Appendix D (eqs D17–D22, D27–D28 and D34). These leading terms read

τ
exp
2y (r) = A1

(
∂3

y − ν2
y∂y

)
Ex (r) + A2

(
∂4

y − ν2
y∂

2
y

)
Ex (r) , (32)

τ
exp
2xy (r) = C1∂x

(
∂2

y − ν2
y

)
Ey (r) + C2∂x

(
∂3

y − ν2
y∂y

)
Ey (r) − 1

ν2
x

[
η0

(
νx

�xi
2

)− 1

η0

(
νx

�xi
2

)
]

∂y

(
∂3

x − ν2
x ∂x

)
Ey (r) (33)

with η0(νx
�xi

2 ) = 1
νx �xi

[exp(νx
�xi

2 ) − exp(−νx
�xi

2 )], where the expressions for A1, A2, C1 and C2 are given in Appendix D, respectively, in
eqs (D19), (D22), (D28) and (D28).

To analyse the leading terms of the exponential FD approximation, let us consider τ
exp
2y (r) in the special case of a uniform grid with a

constant cell size �y (i.e. �y = �y j = �y j−1). Then, eq. (32) becomes

τ
exp
2y (r) = − 1

2ν2
y

[
2 − ν2

y�y2

η−1

(
νy�y

)− 1

] (
∂4

y − ν2
y∂

2
y

)
Ex (r) , (34)

where η−1(νy�y) = 1
2 [exp(νy�y) + exp(−νy�y)].

The corresponding leading term of the truncation error for the standard FD approximation (eq. 30) for the uniform grid becomes

τ std
2y (r) = − 1

12
�y2∂4

y Ex (r) . (35)

We now compare these two expressions of the truncation errors for the two FD methods for an electric field Ex (r) having dependence typical
for CSEM. Let us consider an x-oriented horizontal electric dipole (HED) (a small current element of length dl) with the electric current I ,
placed at the origin in a uniform homogeneous medium. An exact expression for the broadside electric field due to this HED can be obtained
following Ward & Hohmann (1988, p. 173) as

Ex (y) = I dl

4πσ y3

(
k2 y2 − iky − 1

)
exp (−iky) . (36)

Here, Ex (y) represents the electric field which is directed along x , and taken at different positions y, while x = z = 0. Using this simple
expression, we can analytically compute derivatives of any order, for example ∂y Ex (y), ∂2

y Ex (y), ∂3
y Ex (y), . . . , and hence also the leading

terms of the truncation error in eqs (34) and (35) for both FD approximations of ∂2
y Ex (y).

Fig. 2 shows the truncation errors, τ std
2y (r) and τ

exp
2y (r), normalized to the derivative ∂2

y Ex (y) and plotted against cell sizes �y at four
different offsets, y = 4δ, 8δ, 12δ and 16δ; the cell sizes and offsets are normalized to the skin depth δ = √

2/μωσ . From these plots, we
notice that truncation error curve for the exponential FD is almost parallel to the standard FD curve. The truncation error in the standard
FD approximation is of second-order (see eq. 35). Hence, the truncation error in the exponential FD approximation is also approximately
second-order. Indeed, this second-order accuracy can exactly be demonstrated in the limit of small �y, when eq. (34) becomes

τ
exp
2y (r) = − 1

12
�y2

(
∂4

y − ν2
y∂

2
y

)
Ex (r) , (37)

since η−1(νy�y) ≈ 1 + 1
2! ν

2
y�y2 + 1

4! ν
4
y�y4. Interestingly, the plots show that even at larger �y the truncation error in the exponential FD

method also behaves very close to the second-order.
Fig. 2 shows that though both methods are essentially second-order, the truncation error in the exponential FD method can be much

smaller, especially at longer offsets. The respective truncation error in the exponential FD method at offsets y = 4δ, 8δ, 12δ and 16δ

(corresponding to the four plots of Fig. 2) is approximately 2, 5, 8 and 10 times smaller than for the standard FD method. It follows from
eqs (35) and (37) that in the limit of small �y, the truncation errors in both FD methods have the same cell size dependence and differ only in
the offset dependent part: the standard FD has ∂4

y Ex (r), while exponential FD has (∂4
y − ν2

y∂
2
y )Ex (r). Thus, the accuracy improvement of the

exponential FD truncation error is mainly due to the offset dependent part. This improvement is obvious if Ex (y) is a plane wave proportional
to exp(−iky), since then (∂4

y − ν2
y∂

2
y )Ex (r) identically vanishes for νy = −ik. For a dipole source, the fields, for example that given by

eq. (36), are proportional to exponential terms as well as rational expressions. At shorter offsets, the rational expressions dominate, while at
longer offsets, the exponential terms dominate. Therefore, it is expected that the fields due to a dipole source are well approximated using the
exponential FD method at longer offsets, and hence have small truncation errors, which is in agreement with the plots.

To follow the behaviour of truncation errors from very near to very far offsets, we have also plotted the truncation errors in both FD
approximations against the offsets at a given cell size �y = 0.1δ; this is shown in Fig. 3. For both methods, the truncation error increases
towards shorter offsets because closer to the source the fields vary faster and the FD approximations become less accurate. At very near offsets
y < 2δ, the truncation errors for both FD methods are very similar. However, at offsets y > 2δ, the exponential FD method shows a very
clear improvement; the truncation error in the exponential FD method decreases significantly with the offset, while in standard FD method
the truncation error remains almost constant. This is also in agreement with the above discussion because at longer offsets, the electric field
in eq. (36) is dominated by the exponential term exp(−iky), which is well approximated by the exponential FD method. These results clearly
motivate us to perform 3-D EM modelling using the exponential FD method.
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Figure 2. Truncation errors for the standard FD τ std
2y (grey curve) (eq. 35) and the exponential FD τ

exp
2y (black curve) (eq. 34), normalized to the derivative

∂2
y Ex (y) and plotted as a function of different cell sizes (�y/δ) at different offsets: (a)y/δ = 4, (b) y/δ = 8, (c) y/δ = 12 and (d) y/δ = 16. The offsets and cell

sizes are normalized with respect to the skin depth δ. The expression of Ex (y) is given in eq. (36). The truncation errors in both methods are of second-order,
but they are always smaller in exponential FD.

Figure 3. Truncation errors for the standard FD τ std
2y (grey curve) (eq. 35) and the exponential FD τ

exp
2y (black curve) (eq. 34), normalized to the derivative

∂2
y Ex (y) and plotted as a function of offsets (y/δ) at a given cell size �y/δ = 0.1. The expression of Ex (y) is given in eq. (36). It can be observed that the

advantage of exponential FD method is most pronounced at longer offsets.
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CSEM modelling with exponential FD method 1549

Figure 4. Vertical cross-section of a deep-water layered earth model used for CSEM modelling with receivers at the sea bed and a HED source 30 m above it.
ρH = 1/σx = 1/σy and ρV = 1/σz represent, respectively, the horizontal and vertical resistivities.

R E S U LT S

In this section, we compare the efficiency of the standard and exponential FD methods in three marine CSEM scenarios: (1) deep-water, (2)
shallow-water and (3) intermediate water depth. The shallow-water and intermediate water depth cases need a special consideration because
of the presence of the air layer that has an extremely high resistivity and plays a very important role for EM signal propagation.

Deep-water layered earth model

Let us consider the layered earth model depicted in Fig. 4 to compare the efficiency of the exponential and standard FD methods. The model
is vertical transverse isotropic (VTI), that is the conductivity tensor is diagonal and the horizontal conductivity values σx and σy are equal.
The source is an x-oriented HED with a frequency of 1 Hz and placed 30 m above the seabed. The dimension of the model in Fig. 4 is
20 × 20 × 8 km3. We shall refer to this domain as the ‘domain of interest’ which includes the source and receivers. The domain of interest was
discretized using non-uniform grids. Away from the source the cell size increased according to a power law dh(n) = min(dhmin × λn−1, dhmax)
where h = x, y, or z; n = 1, 2, . . . . . . is a cell counter; dhmin is the minimum cell size; dhmax is the maximum cell size; and λ is a constant
growth factor. Values of λ were determined by dhmin, dhmax, number of cells and distance from the source to the model boundaries. The cell
sizes were chosen finer near the source in order to better accommodate for the rapid variation of the EM fields in that region.

The computational domain was extended by adding 15 km padding at the vertical and bottom boundaries of the domain of interest to
reduce the errors due to truncation of the unbounded domain. The horizontal and vertical resistivities of this padding are the same as the
corresponding resistivities at the model boundaries. We refer to this additional padding as the ‘extended domain’. One would normally add
an air layer at the top boundary but this was not done in our deep-water cases since for 1 Hz frequency used in the analysis below, the skin
depth in seawater (with σ = 4 S m−1) is just ∼ 250 m. Hence, the amplitudes of the EM fields, having diffused about twelve skin depth in the
seawater, are reduced by 99.9994 per cent at the sea surface and ignoring the air layer has negligible effect on the computed CSEM response.
The extended domain was discretized with severely stretched non-uniform cells following a similar power law as above, but with a larger λ.
Table 1 specifies the seven different grids used to discretize the domain of interest and extended domain by listing the corresponding λ values,
minimum and maximum cell sizes in the domain of interest, number of cells and resulting number of unknowns. In the extended domain, the
minimum cell sizes are equal to the corresponding maximum cell sizes in the domain of interest and the maximum cell size is 1600 m.

All simulations were carried out sequentially on a computer with Intel Xeon CPU E5-2690 processors running at 2.90 GHz and
264 GB of memory. The resulting matrix equations were solved using the above mentioned iterative solver. The iterations were stopped when
the residual norms (‖Mx − s‖) dropped by a factor 10−9 from its original value for a zero-solution (i.e. ‖s‖). Table 2 shows the run time
statistics for the modelling jobs using the standard and exponential FD methods. It can be observed that the solver took similar time to solve
the linear systems for both FD methods, however, the exponential FD method took somewhat longer time to assemble the matrices than the
standard FD method. The reason for the relatively longer matrix assembly time for the exponential FD method is the fact that the computation
of non-zero coefficients in the matrix involves complex exponential functions. This is however not critical since the matrix assembly time was
always much shorter than the corresponding solution time.
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Table 1. Details of the grids used to discretize the layered earth models for FD CSEM simulations. Here in x-, y- and z directions, respectively, λx, λy and
λz are the constant growth factors, dxmin, dymin and dzmin are the minimum cell sizes, dxmax, dymax and dzmax are the maximum cell sizes, and Nx, Ny and
Nz are the number of cells, while 3N = 3Nx Ny Nz is the total number of unknowns. The domain of interest refers to the main computational volume, which
includes the source and receivers; whilst the extended domain refers to the padding added at the model boundaries to reduce the errors due to truncation of the
unbounded domain. In the extended domain, the minimum cell sizes are equal to the corresponding maximum cell sizes in the domain of interest, while the
maximum cell size is 1600 m in all directions, and λx = λy = λz = λ.

Domain of interest Extended domain

λx = λy dxmin = dymin dxmax = dymax λz dzmin dzmax Nx = Ny Nz λ Nx = Ny Nz

Grids (m) (m) (m) (m) 3N

G-1 1.005 40 90 1.017 20 72 332 164 1.12 52 28 84 934 656
G-2 1.008 60 150 1.026 20 125 212 136 1.12 44 24 31 457 280
G-3 1.019 60 270 1.039 20 200 156 108 1.12 36 20 14 155 776
G-4 1.039 70 440 1.051 30 250 98 78 1.12 30 18 4 718 592
G-5 1.065 80 680 1.058 42 360 70 65 1.12 26 15 2 211 840
G-6 1.073 100 780 1.079 42 450 60 52 1.2 20 12 1 228 800
G-7 1.096 120 1000 1.085 80 500 48 38 1.2 16 10 589 824

Table 2. Runtime statistics for CSEM modelling with the standard and exponential FD methods for the deep-water layered earth model on the different grids
defined in Table 1. The number of iterations is that required for the relative residual norm to drop below 10−9 in the iterative solver. Here ‘Std.’ and ‘Exp.’ are
abbreviations for ‘standard’ and ‘exponential’, respectively.

Matrix assembly time (s) Number of iterations Linear system solution time (s)

Grids Number of unknowns Std. FD Exp. FD Std. FD Exp. FD Std. FD Exp. FD

G-1 84 934 656 192.7 363.6 3 3 1535.6 1539.1
G-2 31 457 280 47.8 106.7 4 4 737.0 734.9
G-3 14 155 776 7.6 46.3 5 5 422.3 419.9
G-4 4 718 592 1.7 15.1 7 7 176.9 181.0
G-5 2 211 840 0.9 4.0 9 9 107.0 110.2
G-6 1 228 800 0.5 3.9 6 7 41.0 45.1
G-7 589 824 0.2 1.8 6 7 19.8 22.4

We compare the 3-D simulation results obtained through the standard and exponential FD methods to reference fields calculated using a
semi-analytical plane-layer method (Løseth & Ursin 2007). Figs 5(a) and (b), respectively, show the amplitude and phase responses for the x-
and z-components of the electric field and the y-component of the magnetic field computed along an inline receiver line located at the seabed.
The grey curve, black curve and circles, respectively, show results obtained with the standard FD, exponential FD and plane-layer methods.
All the three datasets are almost indistinguishable on this scale, therefore it is more instructive to look at the normalized amplitude and phase
difference plots. The normalized amplitudes and phase differences between results obtained with the plane-layer method, and results obtained
via the standard and exponential FD methods on the finest grid (labelled G-1 in Table 1) are plotted, respectively, in Figs 5(c) and (d) for the
inline fields. Except for the responses that are close to the source position, the field amplitudes differ at most by 0.3 per cent and the phases
at most by 0.8◦ in both methods. Hence both methods provide good accuracy for a very fine grid.

We now examine how much the accuracy degrades for each method for fields computed on coarse grids G-2 to G-7 defined in Table 1.
The normalized amplitudes and phase differences between results obtained with the plane-layer method, and results obtained via the standard
and exponential FD methods on grid G-3 are shown, respectively, in Figs 6(a) and (b). It is evident that the exponential FD method gives
more accurate results than the standard FD method. A similar behaviour is observed in Figs 6(c) and (d) showing data for grid G-4.

It is also useful to compute the average relative errors based on the following expression:

ε = 1

p

p∑
i=1

√√√√ |F1 (ri ) − F2 (ri )|2(|F1 (ri )|2 + |F2 (ri )|2
)/

2 + α2
, (38)

where F is either Ex , Ez or Hy , subscript 1 represents fields computed with the plane-layer method, and subscript 2 represents fields computed
with the standard or exponential FD method; p is number of receivers; ri is the position of the i th receiver; and α is the ambient noise level.
The sources of ambient noise could be MT signals, swell noise, or receiver self-noise (Constable & Weiss 2006). Table 3 shows typical values
of α chosen following Mittet & Morten (2013) for different seawater depths. The noise level increases with the reduction in the seawater
depth.

Fig. 6(e) shows the relative errors, averaged over all of the inline offsets from −10 to 10 km, for Ex , Ez and Hy for all the grids from G-1
to G-7 where they are plotted as a function of the number of unknowns. Different number of unknowns correspond to seven different grids
defined in Table 1. From these plots, we observe that the average relative errors in both FD methods are almost identical when the number
of unknowns is very large (grid G-1). However, for Ex and Hy on coarse grids G-2 to G-7, the average relative errors for the exponential
FD method are nearly two to three times smaller than for the standard FD method on the same grids. For Ez , the improvement achieved by
the exponential FD method is slightly less significant than for Ex and Hy , but Ez is in fact much more seldom used in the marine CSEM

 at U
niversity of O

slo L
ibrary on O

ctober 21, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


CSEM modelling with exponential FD method 1551

Figure 5. (a) Amplitude and (b) phase responses of Ex , Ez and Hy at 1 Hz as a function of source-receiver offset for the deep-water layered earth model of
Fig. 4. They are calculated using the standard (grey curve) and exponential (black curve) FD methods, as well as the semi-analytical plane-layer modelling of
Løseth & Ursin (2007) (circles). (c) Normalized amplitudes and (d) phase differences with respect to semi-analytical plane-layer modelling for the fields in (a)
and (b). The FD results are computed on grid G-1 defined in Table 1.
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Figure 6. (a) Normalized amplitude and (b) phase difference for Ex , Ez and Hy similar to those in Figs 5(c) and (d), but computed using coarse grid G-3.
Panels (c) and (d) show similar plots for the even coarser grid G-4. Results obtained with the exponential FD method are more accurate for most offsets. This
is also illustrated in panel (e) showing the relative error averaged over all offsets, eq. (38), as a function of the number of unknowns for all grids defined in
Table 1.
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Table 3. Typical values of the ambient noise level chosen following Mittet
& Morten (2013): αE and αH are the noise levels in the electric and magnetic
fields, respectively.

Ambient noise level (α)

Seawater depth (m) αE (V m−1) αH (A m−1)

3000 7 × 10−17 7 × 10−14

500 4 × 10−16 4 × 10−13

200 8 × 10−16 8 × 10−13

method. For example, for grid G-3, the average relative errors for Ex , Ez and Hy for the exponential FD method are 0.6, 2.4 and 1.1 per
cent, respectively, while for the standard FD method they are larger: 1.9, 3.1 and 2.1 per cent. For grid G-4, the average relative errors for Ex ,
Ez and Hy are, respectively, 1, 4.7 and 2.4 per cent for the exponential FD method and 4.2, 6.8 and 4.9 per cent for the standard FD method.

The above results show that the exponential FD method gives more accurate results than the standard FD method on the same grid. This
implies that the exponential FD method can achieve the same accuracy with a coarser grid and hence is faster than the standard FD method.
To demonstrate this, let us consider a maximum allowed average relative error of 5 per cent. To compute Ex with this error, the standard FD
requires about 4.2 million unknowns while exponential FD requires only 0.7 million unknowns (see blue lines in Fig. 6e). The corresponding
modelling times would be about 164 and 26 s, respectively, for the standard and exponential FD methods. For Hy with the same error, the
standard and exponential FD methods require, respectively, 4.7 million and 1.2 million unknowns, respectively corresponding to modelling
times of 179 and 49 s. Similarly for Ez , the standard and exponential FD methods require, respectively, 8 and 4 million unknowns, respectively
corresponding to modelling times of 268 and 170 s.

If the maximum allowed average relative error is 3 per cent then to compute Ex , the standard and exponential FD methods require,
respectively, 8.2 and 1.2 million unknowns (see red lines in Fig. 6e), respectively corresponding to modelling times of 275 and 49 s. Similarly
for Hy , the standard and exponential FD methods require, respectively, 10 and 3 million unknowns, respectively corresponding to modelling
times of 340 and 132 s. Here, the modelling times were interpolated using Table 2 in combination with Fig. 6(e). It is clear that the exponential
FD method requires approximately two to six times less unknowns or 1.5 to six times shorter modelling times as compared to the standard
FD method for the same accuracy. It should be noted that the savings in modelling time would be even larger if one used a sparse direct solver
since the number of floating point operations required for factorization scales with the number of unknowns as O(N 2), while for an iterative
solver the scaling is approximately linear.

3-D deep-water geological model: Gulf of Mexico

In the previous example, the results were obtained for a simplistic earth model with 1-D resistivity distribution, which is favourable for the
exponential FD method that should be especially efficient for large uniform regions. Inside these regions, the spatial dependence of EM fields
is dominated by the exponential factor eikr , at least at long offsets, and thus should be well approximated by the exponential basis functions.
However, in real world the models have a 3-D structure and a high degree of inhomogeneity. Therefore, it is important to know whether the
proposed exponential FD method can achieve significant improvements also for realistic 3-D cases.

Fig. 7 shows the horizontal and vertical resistivities for a realistic deep-water 3-D model taken from the Perdido fold belt in the
northwestern Gulf of Mexico, with northeast-southwest trending anticlines. The seawater depth is about 3 km with resistivities in the range

Figure 7. (a) Horizontal and (b) vertical resistivity cross-sections from a deep-water Gulf of Mexico model.
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Table 4. Details of the grid used to discretize the 3-D deep-water geological model for FD CSEM simulations. We use the same nomenclature as in Table 1
and the same parameters for the extended domain except that the maximum cell size here is 800 m.

Domain of interest Extended domain
λx dxmin dxmax λy dymin dymax λz dzmin dzmax Nx Ny Nz λ Nx Ny Nz

(m) (m) (m) (m) (m) (m)

1.004 20 90 1.012 50 200 1.017 20 82 702 242 159 1.06 66 46 33

Figure 8. Inline vertical slices showing the CSEM modelling results for the Ex field component, for the deep-water model from the Gulf of Mexico in Fig. 7.
(a) Amplitude response on a log scale; (b) relative difference in amplitudes computed using standard and exponential FD methods, both on a very fine grid
with 768 × 288 × 192 cells. (c) Relative difference in amplitudes computed on the fine (768 × 288 × 192 cells) and coarse (256 × 288 × 64 cells) grids using
the standard FD method. (d) The same as (c), but for the exponential FD method. Comparison of (c) and (d) shows that the proposed exponential method is
more accurate.

0.2–0.3 �m; whereas the formation horizontal and vertical resistivities, respectively vary in the ranges 1.0–2.0 �m and 1.5–3.0 �m. The
model includes a resistive oil reservoir whose horizontal and vertical resistivities are 15.0 and 18.0 �m, respectively. The dimension of the
model is 30 × 26 × 8 km3. The computational domain was extended by adding 10 km padding at the vertical and bottom boundaries of the
domain of interest. The domain of interest and extended domain were discretized using the previously described power law for the non-uniform
grid sizes. Table 4 shows the details of the grid used to discretize the domain of interest and extended domain. The discretization of the FD
grid model results in 768 × 288 × 192 cells, representing approximately 127 million degrees of freedom. The source is an x-oriented HED
with a frequency of 1 Hz and located 30 m above the flat seabed.

The accuracy of our standard FD modelling code for similar 3-D models has been validated in our previous paper Jaysaval et al. (2014)
by comparing our simulation results against results obtain using a fast FD time-domain modelling code.

The matrix assembly and linear system solution times were 302 and 3692 s for the standard FD method, and 425 and 3656 s for the
exponential FD method. For both methods, the iterative solver needed five iterations to allow the relative residual norm to become smaller
than 10−9. Figs 8(a) and 9(a) show the amplitude responses, respectively, for Ex and Ez . The white lines indicate the seafloor at about 3 km
depth and the black arrows indicate the source position. These figures show that the amplitudes of EM fields resulting from a 1 Hz HED
source rapidly decrease with increasing distance from the source. Fig. 8(b) shows the relative difference in Ex amplitude computed by the
standard and exponential FD methods, while Fig. 9(b) shows the same for Ez . The relative amplitude difference, averaged over the whole
model, is less than 0.5 per cent. Hence we again observe that the standard and exponential FD methods give almost identical results on a
very fine grid. Note that this remains true even though the cell sizes in the y-direction were somewhat coarser than in the x- and z-directions.
We tested the effect of different cell sizes in the y-direction and found only minor effect in the accuracy, provided that the cell sizes were not
chosen excessively coarse. For example, the average relative amplitude difference between modelled results with the standard and exponential
FD methods when going from (λy = 1.009, dymin = 30 m, dymax = 150 m) to (λy = 1.022, dymin = 60 m, dymax = 300 m) was between
0.4 and 0.7 per cent. Hence the grid specified in Table 4 is fine enough in the y-direction to provide good accuracy.

We shall now illustrate the efficiency improvements of the exponential FD method against the standard FD method for coarser grids.
Due to unavailability of analytical solutions for 3-D models, we assume the results obtained using the above fine grid with 768 × 288 × 192
cells are a good approximation to the exact solution. These fine grid results are then compared against coarse grid results obtained using
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Figure 9. The same as Fig. 8, but for the Ez field component. Comparison of (c) and (d) shows that the proposed exponential method is more accurate also
for Ez .

both FD methods. The coarse grid model is obtained from the fine grid model by merging each successive three cells together in the x-
and z-directions but no merging is done in the y-direction where the cell sizes were already chosen quite coarse. The resulting coarse grid
discretized model has 256 × 288 × 64 cells, representing approximately 14.2 million degrees of freedom. The matrix assembly and linear
system solution times were 11 and 434 s for the standard FD method and 52 and 428 s for the exponential FD method. For both methods, the
iterative solver again needed five iterations to allow the relative residual norm to drop below 10−9.

The relative amplitude differences between the fine and coarse grid results obtained using the standard FD are shown in Figs 8(c)
and 9(c), respectively, for Ex and Ez . Figs 8(d) and 9(d) show the same relative errors, respectively, for Ex and Ez but computed using the
exponential FD method. Comparison of these relative amplitude difference images reveals that the exponential FD method provides more
accurate results as compared to the standard FD method on the same grid. For example, the relative amplitude differences in the seawater
and near the seafloor (at intermediate-to-long offsets) were significantly reduced in the exponential FD method. In addition, the exponential
FD results were improved in the formation at long offsets and central deeper part of the model as compared to the standard FD results. The
average values of the relative amplitude difference between the fine and coarse grid results for Ex and Ez are, respectively, 3.2 and 3.8 per
cent for the standard FD method and 1.7 and 2.1 per cent for the exponential FD method.

Shallow-water layered earth model

To examine the performance of the exponential FD method for shallow-water cases, we built a shallow-water resistivity model from the
deep-water layered earth model by simply removing 2.8 km of seawater so that the water layer becomes only 200 m thick. The source is again
an x-oriented HED with a frequency of 1 Hz placed 30 m above the seabed. For shallow-water models, it is essential to include a thick air
layer above the sea surface; therefore, the top boundary of the computational domain included an air layer of thickness ∼50 km and resistivity
106 �m. In addition, 30 km padding was added at the vertical and bottom boundaries of the domain of interest. Note that, for shallow-water
models, the computational domain boundaries are required to be placed even farther from the source as compared to those for deep-water
models. This is in order to make sure the combination of a strong shallow-water airwave and zero-field Dirichlet boundary conditions does not
lead to edge effects. The airwave is the signal component that diffuses upward through the seawater from the source to the sea surface, then
propagates as a ‘wave’ horizontally through the air before diffusing back down through the seawater to the receiver (Nordskag & Amundsen
2007).

The air layer was discretized with 20 horizontal layers of cells; the cell thickness increased rapidly according to the power law defined
above with λ = 1.28 and the minimum cell thickness of 80 m at the air-water interface. The domain of interest was again discretized using
the same grids from G-1 to G-7 described in Table 1 except for discretization in the z-direction. For this model in the z-direction, we have
only 200 m of seawater, formation, resistor and the additional air layer; the seawater was discretized using the same λz value as in Table 1 but
with minimum cell sizes of 20 and 50 m, respectively, for grids G-1 to G-4 and G-5 to G-7, while the formation and resistor were discretized
using the same parameters as in Table 1. The number of cells and unknowns remains the same as given in Table 1. Here, the extended domain
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Table 5. Runtime statistics for CSEM modelling with the standard and exponential FD methods for the shallow-water (200 m) layered earth model on the
different grids defined in Table 1. The iterations were stopped when the relative residual norms dropped below 10−8. Here ‘Std.’ and ‘Exp.’ are abbreviations
for ‘standard’ and ‘exponential’, respectively.

Matrix assembly time (s) Number of iterations Linear system solution time (s)

Grids Number of unknowns Std. FD Exp. FD Std. FD Exp. FD Std. FD Exp. FD

G-1 84 934 656 225.3 333.2 69 71 32387.9 32925.6
G-2 31 457 280 49.8 101.7 56 57 10698.3 10728.6
G-3 14 155 776 5.7 45.9 36 41 3185.2 3625.3
G-4 4 718 592 1.8 15.1 19 20 566.5 602.3
G-5 2 211 840 0.9 7.1 11 12 158.0 185.2
G-6 1 228 800 0.6 3.9 15 16 111.6 119.5
G-7 589 824 0.2 1.7 16 17 51.6 53.2

was also discretized with severely stretched non-uniform cells as previously but with the maximum cell size of 4000 m and λ = 1.16 and
1.24, respectively, for grids G-1 to G-4 and G-5 to G-7.

Table 5 shows the run time statistics for the shallow-water modelling jobs using the standard and exponential FD methods. The matrix
assembly times for both methods were very similar to the corresponding matrix assembly times in the deep-water layered earth model.
However, the convergence rate of the solver became significantly slower than for the deep-water model, see Table 2, particularly for the finer
grids. The reason for the slow convergence is ill-conditioning of the matrices resulting from large aspect ratios of the cells in the air layer and
thick boundary paddings. The very high resistivities in the air layer are an additional reason—this gives a large null-space to the curl–curl
operator (Mulder 2006). Due to slow convergence of the solver for shallow-water models, the iterations were chosen to stop when the relative
residual norms drop below 10−8 instead of 10−9 as for deep-water models. This choice of the convergence criteria also provides very good
accuracy of computed fields as can be seen in the following results.

Figs 10(a) and (b) show the amplitude and phase responses of Ex , Ez and Hy computed on a coarse grid G-3 along an inline receiver
line located at the seabed. The normalized amplitudes and phase differences between results obtained with the plane-layer method, and results
obtained via the standard and exponential FD methods on grid G-3 are plotted, respectively, in Figs 10(c) and (d). These figures show that
the numerical errors in both FD methods are very similar. We now compute the relative errors, averaged over all of the inline offsets from
−10 to 10 km, using eq. (38) and α values from Table 3. These average relative errors have very similar values for both methods: 1.6, 2.8 and
1.3 per cent, respectively, for Ex , Ez and Hy .

The results obtained on coarse grid G-3, unlike the deep-water results, show no improvements by using the exponential FD method
against the standard FD method. Therefore, we calculate average relative errors for the fields computed using both FD methods on all other
grids from G-1 to G-7 to see if there exists any improvements on them. Fig. 10(e) shows plots of relative errors, averaged over all of the inline
offsets from −10 to 10 km, for Ex , Ez and Hy as a function of the number of unknowns for the standard and exponential FD methods. Also
from these plots, one can hardly notice any improvements due to the use of the exponential FD method and both methods have very similar
average relative errors.

Intermediate water depth layered earth model

In the previous examples, we examined the performance of the exponential FD method against the standard FD method for the deep-water and
shallow-water cases. We now examine the same for an intermediate water depth case. We built an intermediate water depth model from the
deep-water layered earth model by removing 2.5 km of seawater so that the water layer becomes only 500 m thick. The source parameters,
air layer, boundary extensions and discretization were similar to the previous shallow-water model example. The differences were only in
the seawater thickness, now 500 m, and its discretization parameters which were the same as in Table 1. Table 6 gives run time statistics
for the modelling jobs using the standard and exponential FD methods. The matrix assembly times for both methods were also very similar
to the corresponding matrix assembly times in the previous layered earth model examples. The convergence rate of the solver improved as
compared to the shallow-water model with 200 m of seawater.

Figs 11(a) and (b) show the amplitude and phase responses, respectively, and Figs 11(c) and (d), respectively, show the normalized
amplitudes and phase differences between the responses computed with the plane-layer method, and standard and exponential FD methods
on grid G-3. Figs 11(c) and (d) show that no major improvements in the numerical results on grid G-3 by using the exponential FD method
as compared to the standard FD method. Fig. 11(e) shows plots of relative errors, averaged over all of the inline offsets from −10 to 10 km,
for the inline fields as a function of the number of unknowns for standard and exponential FD methods; the selected values of α are shown in
Table 3 for 500 m of seawater. From these plots, we observe that the exponential and standard FD methods provide similar accuracy for the
finer grids, but the exponential FD method gives slightly better results on the coarser grids.
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Figure 10. (a) Amplitude and (b) phase responses of Ex , Ez and Hy at 1 Hz for a shallow-water layered earth model built by removing 2.8 km of seawater
from the deep-water model of Fig. 4. They are calculated using the standard (grey curve) and exponential (black curve) FD methods, as well as the plane-layer
modelling (circles). (c) Normalized amplitude and (d) phase difference for the fields in (a) and (b) computed on a coarse grid G-3. (e) Average relative error
plots for Ex , Ez and Hy as a function of the number of unknowns.
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Table 6. The same as Table 5 but for the intermediate water depth model with 500 m of seawater.

Matrix assembly time (s) Number of iterations Linear system solution time (s)

Grids Number of unknowns Std. FD Exp. FD Std. FD Exp. FD Std. FD Exp. FD

G-1 84 934 656 224.5 346.3 34 34 16100.2 16128.1
G-2 31 457 280 49.5 101.1 22 24 4259.4 4540.7
G-3 14 155 776 10.3 54.1 18 19 1535.8 1557.2
G-4 4 718 592 1.8 15.3 12 12 357.7 358.4
G-5 2 211 840 0.8 7.2 11 12 156.4 172.1
G-6 1 228 800 0.5 4.0 10 10 76.0 75.7
G-7 589 824 0.3 1.6 12 12 37.2 36.9

Accuracy improvements for upgoing field

We observed that the exponential FD method gave more accurate results as compared to the standard FD method for the deep-water cases,
while the two were competitive for the shallow and intermediate water cases; this was illustrated by considering the total electric field. The
behaviour for the latter cases can be explained by considering two facts related to the airwave. First, in shallow and intermediate water, the
airwave contribution is usually stronger than the subsurface response at intermediate-to-long offsets (Constable & Weiss 2006; Nordskag &
Amundsen 2007; Weidelt 2007; Andréis & MacGregor 2008). Second, as shown in Appendix B, the exponential FD approximation tends
to standard FD approximation in the limit when conductivity tends to zero (e.g. in the air layer). Therefore, both these FD methods give
very similar results for the airwave, which usually dominates the EM fields at intermediate-to-long offsets recorded at the seabed in the
shallow and intermediate water cases. However, the situation is different if we consider only the upgoing component of the field, obtained
using up-down decomposition (Amundsen et al. 2006; Nordskag & Amundsen 2007), and disregard the downgoing airwave. For the upgoing
field, the exponential FD method gives more accurate results also for the shallow and intermediate cases. In the following paragraphs, we
present up-down decomposition in brief followed by accuracy comparison of both FD methods for the upgoing electric field in the shallow
and intermediate water cases.

The main purpose of acquiring CSEM data is to analyse the subsurface response, which has useful information about the subsurface
(formation and/or hydrocarbon reservoir) resistivities. Therefore, a key requirement for CSEM modelling is to have a numerical method that
gives superior accuracy specifically for the subsurface response. We use the fact that up-down decomposition of EM fields can be performed
in order to separate upgoing and downgoing fields following Amundsen et al. (2006) and Nordskag & Amundsen (2007). They further
demonstrate that the scattered fields (subsurface response) are mainly associated with upgoing fields. According to them, the upgoing electric
field EU

x for an inline configuration is given as

EU
x (rr ) = 1

2

[
Ex (rr ) − Z f Hy (rr )

]
, (39)

where Ex (rr ) and Hy(rr ) are, respectively, the measured electric and magnetic fields at the receiver locations rr . For up-down decomposition
below the seabed, Z f is the characteristic impedance for the top formation immediately below the seabed. The characteristic impedance for a
VTI medium is given by Mittet & Gabrielsen (2013) as

Z f = √−iμωρH , (40)

where ρH is the horizontal resistivity of the top formation immediately below the seabed. The motive of doing this decomposition is to remove
the downgoing airwave and extract the upgoing electric field; this leaves signal carrying information mostly about the subsurface.

We first consider the previous shallow-water model example and compute the upgoing electric field using eqs (39) and (40). Fig. 12(a)
shows the amplitude and phase responses of the upgoing electric field EU

x computed for the shallow-water model. In this computation, we
used Ex and Hy calculated with the standard FD, exponential FD, and plane-layer modelling methods. The normalized amplitudes and phase
differences for EU

x between results obtained with the plane-layer method, and results obtained via the standard and exponential FD methods
are shown in Figs 12(b) and (c), respectively, for grids G-3 and G-4. These figures show that the numerical errors in the exponential FD
method are smaller than those in the standard FD method.

We compute the relative errors, averaged over all of the inline offsets from −10 to 10 km, in the upgoing field EU
x calculated using

both methods. These, for the standard and exponential FD methods, are respectively 2.3 and 1.3 per cent on grid G-3; and 4.9 and 2.4 per
cent on grid G-4. Fig. 13 shows a plot of average relative errors for EU

x as a function of the number of unknowns for both methods. Except
for the finest grid G-1 (with ∼85 million unknowns), we observe that the accuracy in the exponential FD method results is approximately
two times better than in the corresponding standard FD method results. Here α = 7 × 10−16 V m−1 was chosen to calculate average relative

errors in EU
x using eq. (38). This value was obtained using α = 1

2

√
(α2

E + |Z f |2α2
H ), where αE and αH are respectively the ambient noise

level in the electric and magnetic fields (see Table 3), with the assumption that the ambient noise sources in the electric and magnetic fields
are uncorrelated. Note that if these noise sources are correlated, which can happen, for example in the case of MT noise, the resulting noise
level in the upgoing field will be lower—the value of α we obtained is hence an upper bound. For reference, we also computed the average
relative errors using the same value of α as in the deep-water layered earth model example for the electric field (see Table 3). This can be
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Figure 11. (a) Amplitude and (b) phase responses of Ex , Ez and Hy at 1 Hz for an intermediate water depth layered earth model built by removing 2.5 km
of seawater from the deep-water model of Fig. 4. They are calculated using the standard (grey curve) and exponential (black curve) FD methods, as well as
the plane-layer modelling (circles). (c) Normalized amplitude and (d) phase difference for the fields in (a) and (b) computed on a coarse grid G-3. (e) Average
relative error plots for Ex , Ez and Hy as a function of the number of unknowns.
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Figure 12. (a) Amplitude (left) and phase (right) responses for the upgoing electric field EU
x obtained with Ex and Hy in Figs 10(a) and (b) using eqs (39)

and (40). The grey curve, black curve and circles show EU
x responses computed, respectively, with the standard FD, exponential FD and plane-layer modelling

methods. Normalized amplitude (left) and phase difference (right) for EU
x are shown in (b) for a coarse grid G-3. (c) Similar plots as (b), but for even coarser

grid G-4.

considered a lower bound in the ambient noise level. The pattern we found was very similar to that in Fig. 13. Hence, the exponential FD
gives more accurate results for the upgoing fields for the range of noise levels that can be considered relevant.

Fig. 13 indicates that the standard and exponential FD methods require, respectively, about 4.7 and 1.5 million unknowns to compute
EU

x with 5 per cent maximum allowed average relative error (see blue lines in Fig. 13). The corresponding modelling times would be about
565 and 145 s, respectively, for the standard and exponential FD methods. If the maximum allowed average relative error is 3 per cent then the
standard and exponential FD methods require, respectively, 10 million and 3.4 million unknowns (see red lines in Fig. 13) or modelling times
of respectively 2020 and 340 s. These modelling times were interpolated using Table 5 in combination with Fig. 13. This analysis shows that
the exponential FD method requires about three times fewer unknowns or four to six times shorter modelling times as compared to standard
FD method for the same accuracy.
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Figure 13. Average relative errors in the upgoing electric field EU
x computed for a shallow-water CSEM model using the standard and exponential FD methods.

Different number of unknowns correspond to seven different grids defined in Table 1. The errors are computed from the data plotted in Fig. 12(a) for grid G-3
and similar data for other grids and averaging them over offsets.

We now consider the intermediate water model example and compute the upgoing electric field using eqs (39) and (40). The amplitude
and phase responses for the upgoing electric field EU

x computed using Ex and Hy are shown in Fig. 14(a). The normalized amplitudes and
phase differences for EU

x between results obtained with the plane-layer method, and results obtained via the standard and exponential FD
methods are shown in Figs 14(b) and (c), respectively, for coarse grids G-3 and G-4. It is clear from Figs 14(b) and (c) that the exponential FD
method gives more accurate results than the standard FD method. Here α = 1.4 × 10−15 V m−1 was chosen to compute the average relative
error in the calculated upgoing field EU

x ; this value was obtained using αE and αH (see Table 3) as in the previous shallow-water layered
earth example. The average relative errors for EU

x calculated using the standard and exponential FD methods are, respectively, 2.0 per cent
and 0.9 per cent on grid G-3 and 4.9 per cent and 2 per cent on grid G-4. Fig. 15 shows a plot of average relative errors for EU

x as a function
of the number of unknowns for the standard and exponential FD methods. Except for the finest grid G-1, the average relative errors in the
exponential FD method results are nearly 2–2.5 times smaller than in the corresponding standard FD method results. In addition, we also
computed the average relative errors with the same value of α as in the deep-water layered earth model example for the electric field (see
Table 3) and found a very similar pattern as in Fig. 15.

In this case, the analysis using Fig. 15 shows that the standard and exponential FD methods require, respectively, about 4.6 and
1.5 million unknowns to compute EU

x with 5 per cent maximum allowed average relative error (see blue lines in Fig. 15). The corresponding
modelling times would be about 345 and 110 s, respectively, for the standard and exponential FD methods. For a 3 per cent maximum allowed
average relative error, the standard and exponential FD methods require, respectively, 8.9 and 2.8 million unknowns (see red lines in Fig. 15)
or modelling times of respectively 880 and 215 s. These modelling times were interpolated using Table 6 in combination with Fig. 15. It is
clear that the exponential FD method requires about three times less unknowns or three to four times shorter modelling times as compared to
standard FD method for the same accuracy in the upgoing fields.

C O N C LU S I O N S

We have presented a novel numerical scheme to perform 3-D EM simulations using an exponential FD method. To approximate the EM
fields between grid nodes, the method employs exponential basis functions of the form {1, exp[±(νx x + νy y + νz z)]} instead of low-degree
polynomials as in the standard FD method. Since the EM fields have oscillatory and exponentially decaying behaviour in a conducting
medium, the exponential FD method approximates them better between the nodes and thus provides more accurate results as compared to
the standard FD method on a given grid. For a deep-water CSEM scenario, the observed improvement in the accuracy of computed EM
fields is two to three times. Correspondingly, to achieve the same modelling accuracy, the exponential method requires two to six times
fewer unknowns and 1.5 to 6 times shorter modelling times as compared to the standard method. For shallow-water and intermediate water
depth models, the method mainly improves the accuracy for the upgoing fields. The accuracy for the downgoing fields is similar with both
methods because in shallow and intermediate water these fields travel mostly through the highly resistive air layer where the exponents νx ,
νy and νz tend to zero and both FD methods become equivalent. For the upgoing electric field, the exponential FD method provides 2–2.5
times improvement in the accuracy, or, equivalently, three times fewer unknowns and three- to six-fold speed-up compared to the standard FD
method that needs a finer grid to reach the same accuracy.
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Figure 14. (a) Amplitude (left-hand side) and phase (right-hand side) responses for the upgoing electric field EU
x obtained using Ex and Hy in Figs 11(a)

and (b). The grey curve, black curve and circles show EU
x responses computed, respectively, with the standard FD, exponential FD and plane-layer modelling

methods. (b) Normalized amplitude (left-hand side) and phase difference (right-hand side) for EU
x computed on a coarse grid G-3. (c) Similar plots as (b), but

for even coarser grid G-4.
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Figure 15. Plot of average relative errors for EU
x as a function of the number of unknowns for an intermediate water depth CSEM model. These errors are

computed from the data plotted in Fig. 14(a) for grid G-3 and similar data for other grids and averaging them over offsets.
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A P P E N D I X A : D E R I VAT I O N O F E X P O N E N T I A L F I N I T E - D I F F E R E N C E
A P P ROX I M AT I O N

The derivation of the exponential FD approximation of ∂2
y Ex (r), ∂x Ey(r) and ∂y Ey(r) at (xi + �xi

2 , y j , zk) on the Yee staggered grid (Fig. 1)
is summarized in this appendix. Consider the definition of operator L2y[�y j−1, �y j , a] in eq. (14)

L2y

[
�y j−1, �y j , a

]
Ex (r)= ∂2 Ex (x, y, z)

∂ y2

∣∣∣∣
i+ 1

2 , j,k

− 1

�y j−1�y j

[
a1 E x

i+ 1
2 , j+1,k

+ a2 E x
i+ 1

2 , j,k
+ a3 E x

i+ 1
2 , j−1,k

]
. (A1)

In exponential FDs, the field Ex (r) between the nodal points is considered as some combination of exponential basis functions
{1, exp[±(νx x + νy y + νz z)]}. Application of operator L2y[�y j−1, �y j , a] to the basis functions {1, exp[±(νx x + νy y + νz z)]} yields

L2y

[
�y j−1, �y j , a

]
1 = − 1

�y j−1�y j
[a1 + a2 + a3] , (A2)

L2y

[
�y j−1, �y j , a

]
exp
{± (νx x + νy y + νz z

)}
= ν2

y exp
{± (νx x + νy y + νz z

)} ∣∣∣i+ 1
2 , j,k

− 1

�y j−1�y j

[
a1 exp

(
±
{
νx

(
xi + �xi

2

)
+ νy

(
y j + �y j

)+ νz zk

})

+ a2 exp

(
±
{
νx

(
xi + �xi

2

)
+ νy y j + νz zk

})

+ a3 exp

(
±
{
νx

(
xi + �xi

2

)
+ νy

(
y j − �y j−1

)+ vz zk

})]
(A3)

= exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�y j−1�y j

[
ν2

y�y j−1�y j − a1 exp
(±νy�y j

)− a2 − a3 exp
(∓νy�y j−1

)]
. (A4)

This can be written as

L2y

[
�y j−1, �y j , a

]
exp
{± (νx x + νy y + νz z

)} = exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�y j−1�y j

ε±
2y

[
�y j−1, �y j , a

]
, (A5)

where

ε+
2y

[
�y j−1, �y j , a

] = ν2
y�y j−1�y j − a1 exp

(
νy�y j

)− a2 − a3 exp
(−νy�y j−1

)
, (A6)

ε−
2y

[
�y j−1, �y j , a

] = ν2
y�y j−1�y j − a1 exp

(−νy�y j

)− a2 − a3 exp
(
νy�y j−1

)
. (A7)

We construct the quantities G±
2y[�y j−1, �y j , a] using ε±

2y[�y j−1, �y j , a] as

G+
2y

[
�y j−1, �y j , a

] = 1

2

[
ε+

2y

(
�y j−1, �y j , a

)+ ε−
2y

(
�y j−1,�y j , a

)]
(A8)

= ν2
y�y j−1�y j − a1η−1

(
νy�y j

)− a2 − a3η−1

(
νy�y j−1

)
, (A9)

where η−1(νy�y) = 1
2 [exp(νy�y) + exp(−νy�y)].
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Similarly,

G−
2y

[
�y j−1, �y j , a

] = 1

2νy

√
�y j−1�y j

[
ε+

2y

(
�y j−1, �y j , a

)− ε−
2y

(
�y j−1, �y j , a

)]
(A10)

= −a1

√
�y j

�y j−1
η0

(
νy�y j

)+ a3

√
�y j−1

�y j
η0

(
νy�y j−1

)
, (A11)

where η0(νy�y) = 1
2νy�y [exp(νy�y) − exp(−νy�y)].

After constructing the expressions for G±
2y[�y j−1, �y j , a], our task is to find values for the set of coefficients a. This can be

done by setting L2y[�y j−1, �y j , a]1 = 0 and L2y[�y j−1, �y j , a] exp{±(νx x + νy y + νz z)} = 0. Eqs (A5), (A8) and (A10) imply that
L2y[�y j−1,�y j , a] exp{±(νx x + νy y + νz z)} = 0 is equivalent to G±

2y[�y j−1, �y j , a] = 0. Therefore, to obtain a, we need to solve
L2y[�y j−1,�y j , a]1 = 0 and G±

2y[�y j−1, �y j , a] = 0. The solutions to these three equations yield the coefficients

a1 = ν2
y�y j−1�y j[{

η−1

(
νy�y j

)− 1
}+ {η−1

(
νy�y j−1

)− 1
} �y j

�y j−1

η0(νy�y j )
η0(νy�y j−1)

] , (A12)

a3 = �y j

�y j−1

η0

(
νy�y j

)
η0

(
νy�y j−1

)a1, (A13)

a2 = −a1 − a3. (A14)

Now consider the exponential FD approximation of ∂x Ey(r) at (xi + �xi
2 , y j , zk) on the staggered grid

∂ Ey (x, y, z)

∂x

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�xi

{
b1 E y

i+1, j,k + b2 E y
i, j,k

}
, (A15)

where b ≡ [b1, b2] is a set of coefficients to be determined using exponential FD approximation. Define an operator L1x [�xi , b] such that

L1x [�xi , b] Ey (r) = ∂ Ey (x, y, z)

∂x

∣∣∣∣
i+ 1

2 , j,k

− 1

�xi

{
b1 E y

i+1, j,k + b2 E y
i, j,k

}
. (A16)

Following the above procedure, we apply the operator L1x [�xi , b] to the basis functions exp{±(νx x + νy y + νy z)}.
L1x [�yi , b] exp

{± (νx x + νy y + νz z
)}

= ±νx exp
{± (νx x + νy y + νz z

)} ∣∣∣i+ 1
2 , j,k − 1

�xi

[
b1 exp

(± {νx (xi + �xi ) + νy y j + νz zk

})
+ b2 exp

(± {νx xi + νy y j + νz zk

})]
(A17)

= exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�xi

[
±νx�xi − b1 exp

(
±νx

�xi

2

)
− b2 exp

(
∓νx

�xi

2

)]
. (A18)

This can be written

L1x [�xi , b] exp {±ν (x + y + z)} = exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�xi

ε±
1x [�xi , b] , (A19)

where

ε+
1x [�xi , b] = νx�xi − b1 exp

(
νx

�xi

2

)
− b2 exp

(
−νx

�xi

2

)
, (A20)

ε−
1x [�xi , b] = −νx�xi − b1 exp

(
−νx

�xi

2

)
− b2 exp

(
νx

�xi

2

)
. (A21)

We then construct G±
1x [�xi , b] using ε±

1x [�xi , b] as

G+
1x [�xi , b] = 1

2

[
ε+

1x (�xi , b) + ε−
1x (�xi , b)

]
(A22)

= −b1η−1

(
νx

�xi

2

)
− b2η−1

(
νx

�xi

2

)
, (A23)
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G−
1x [�xi , b] = 1

νx�xi

[
ε+

1x (�xi , b) − ε−
1x (�xi , b)

]
(A24)

= 2 − b1η0

(
νx

�xi

2

)
+ b2η0

(
νx

�xi

2

)
. (A25)

Solving G±
1x [�xi , b] = 0 yields

b1 = −b2 = 1

η0

(
νx

�xi
2

) . (A26)

Finally, consider

∂ Ey (x, y, z)

∂y

∣∣∣∣
i+ 1

2 , j,k

≈ 1

�ys j

{
c1 E y

i+ 1
2 , j+ 1

2 ,k
+ c2 E y

i+ 1
2 , j− 1

2 ,k

}
, (A27)

where �ys j = 1
2 (�y j−1 + �y j ), and c ≡ [c1, c2] is a set of coefficients to be determined for exponential FD approximation. Let us define the

operator

L1y

[
�y j−1, �y j , c

]
Ey (r) = ∂ Ey (x, y, z)

∂y

∣∣∣∣
i+ 1

2 , j,k

− 1

�ys j

{
c1 E y

i+ 1
2 , j+ 1

2 ,k
+ c2 E y

i+ 1
2 , j− 1

2 ,k

}
. (A28)

Applying this operator to the basis functions exp{±(νx x + νy y + νy z)} gives

L1y

[
�y j−1, �y j , c

]
exp
{± (νx x + νy y + νz z

)}
= ±νy exp

{± (νx x + νy y + νz z
)} ∣∣∣i+ 1

2 , j,k − 1

�ys j

[
c1 exp

(
±
{
νx

(
xi + �xi

2

)
+ νy

(
y j + �y j

2

)
+ νz zk

})

+ c2 exp

(
±
{
νx

(
xi + �xi

2

)
+ νy

(
y j − �y j−1

2

)
+ νz zk

})]
(A29)

= exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�ys j

[
±νy�ys j − c1 exp

(
±νy

�y j

2

)
− c2 exp

(
∓νy

�y j−1

2

)]
. (A30)

Let

L1y

[
�y j−1, �y j , c

]
exp
{± (νx x + νy y + νz z

)} = exp
(± {νx

(
xi + �xi

2

)+ νy y j + νz zk

})
�ys j

ε±
1y

[
�y j−1,�y j , c

]
, (A31)

where

ε+
1y

[
�y j−1, �y j , c

] = νy�ys j − c1 exp

(
νy

�y j

2

)
− c2 exp

(
−νy

�y j−1

2

)
, (A32)

ε−
1y

[
�y j−1, �y j , c

] = −νy�ys j − c1 exp

(
−νy

�y j

2

)
− c2 exp

(
νy

�y j−1

2

)
. (A33)

We construct G±
1y[�y j−1, �y j , c] as

G+
1y

[
�y j−1, �y j , c

] = 1

2

[
ε+

1y

(
�y j−1, �y j , c

)+ ε−
1y

(
�y j−1, �y j , c

)]
(A34)

= −c1η−1

(
νy

�y j

2

)
− c2η−1

(
νy

�y j−1

2

)
, (A35)

G−
1y

[
�y j−1, �y j , c

] = 1

νy

√
�y j�y j−1

[
ε+

1y

(
�y j−1, �y j , c

)− ε−
1y

(
�y j−1, �y j , c

)]
(A36)

= 2�ys j√
�y j�y j−1

−
√

�y j

�y j−1
c1η0

(
νy

�y j

2

)
+
√

�y j−1

�y j
c1η0

(
νy

�y j−1

2

)
. (A37)
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Solving G±
1y[�y j−1, �y j , c] = 0, we obtain

c1 = 2�ys j⎡
⎣�y jη0

(
νy

�y j

2

)
+ �y j−1η0

(
νy

�y j−1

2

) η−1

(
νy

�y j
2

)

η−1

(
νy

�y j−1
2

)
⎤
⎦

, (A38)

c2 = −
η−1

(
νy

�y j

2

)
η−1

(
νy

�y j−1

2

) c1. (A39)

A P P E N D I X B : L I M I T I N G C A S E O F E X P O N E N T I A L F I N I T E - D I F F E R E N C E
A P P ROX I M AT I O N

In our study, the values of the exponents, based on the frequency and node conductivity, are chosen as v = ±(−1 + i)
√

μωσ

2 . This implies

that v tends to zero if either the conductivity σ or the frequency f tends to zero. In this appendix, we examine the behaviour of exponential
FD approximation in the limit when νx , νy and νz → 0.

Let us consider the limiting cases for η0(νy�y), η−1(νy�y),
η0(νy�y j )

η0(νy�y j−1) and
η−1(νy

�y j
2 )

η−1(νy
�y j−1

2 )
when νy → 0.

lim
νy→0

η0

(
νy�y

) = lim
νy→0

1

2νy�y

[
exp
(
νy�y

)− exp
(−νy�y

)]
. (B1)

Eq. (B1) being an indeterminate 0
0 form, we apply l’Hôpital’s rule, which gives

lim
νy→0

η0

(
νy�y

) = 1. (B2)

lim
νy→0

η−1

(
νy�y

) = lim
νy→0

1

2

[
exp
(
νy�y

)+ exp
(−νy�y

)] = 1. (B3)

lim
νy→0

η0

(
νy�y j

)
η0

(
νy�y j−1

) =
lim
νy→0

η0

(
νy�y j

)
lim
νy→0

η0

(
νy�y j−1

) . (B4)

Using limiting result of eq. (B2)

lim
νy→0

η0

(
νy�y j

)
η0

(
νy�y j−1

) = 1. (B5)

lim
νy→0

η−1

(
νy�y j

)
η−1

(
νy�y j−1

) =
lim
νy→0

η−1

(
νy�y j

)
lim
νy→0

η−1

(
νy�y j−1

) . (B6)

Using limiting result of eq. (B3)

lim
νy→0

η−1

(
νy�y j

)
η−1

(
νy�y j−1

) = 1. (B7)

We now consider the limiting case for the set of coefficients a ≡ [a1, a2, a3]

lim
νy→0

a1 = lim
νy→0

ν2
y�y j−1�y j[{

η−1

(
νy�y j

)− 1
}+ {η−1

(
νy�y j−1

)− 1
} �y j

�y j−1

η0(νy�y j )
η0(νy�y j−1)

] . (B8)

Using limiting result of eq. (B5)

lim
νy→0

a1 = lim
νy→0

ν2
y�y j−1�y j[{

η−1

(
νy�y j

)− 1
}+ {η−1

(
νy�y j−1

)− 1
} �y j

�y j−1

] . (B9)

Eq. (B9) being an indeterminate 0
0 form, we apply l’Hôpital’s rule

lim
νy→0

a1 = lim
νy→0

2νy�y j−1�y j[
d

dνy

{
η−1

(
νy�y j

)− 1
}+ d

dνy

{
η−1

(
νy�y j−1

)− 1
} �y j

�y j−1

] (B10)

 at U
niversity of O

slo L
ibrary on O

ctober 21, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1568 P. Jaysaval, D.V. Shantsev and S. de la Kethulle de Ryhove

= lim
νy→0

4νy�y j−1[{
exp
(
νy�y j

)− exp
(−νy�y j

)}+ {exp
(
νy�y j−1

)− exp
(−νy�y j−1

)}] . (B11)

Eq. (B11) being again an indeterminate 0
0 form, we apply l’Hôpital’s rule

= lim
νy→0

4�y j−1[
�y j

{
exp
(
νy�y j

)+ exp
(−νy�y j

)}+ �y j−1

{
exp
(
νy�y j−1

)+ exp
(−νy�y j−1

)}] (B12)

lim
νy→0

a1 = �y j−1

�ys j
. (B13)

lim
νy→0

a3 = lim
νy→0

�y j

�y j−1

η0

(
νy�y j

)
η0

(
νy�y j−1

)a1. (B14)

Using the limiting results of eqs (B5) and (B13) gives

lim
νy→0

a3 = �y j

�ys j
. (B15)

lim
νy→0

a2 = lim
νy→0

(−a1 − a3) = −2. (B16)

We now consider the limiting case for the set of coefficients b ≡ [b1, b2] and c ≡ [c1, c2]

lim
νx →0

b1 = − lim
νx →0

b2 = lim
νx →0

1

η0

(
νx

�xi
2

) . (B17)

Using the limiting result of eq. (B2) gives

lim
νx →0

b1 = − lim
νx →0

b2 = 1. (B18)

lim
νy→0

c1 = lim
νy→0

2�ys j⎡
⎣�y jη0

(
νy

�y j

2

)
+ �y j−1η0

(
νy

�y j−1

2

) η−1

(
νy

�y j
2

)

η−1

(
νy

�y j−1
2

)
⎤
⎦

. (B19)

Using the limiting results of eqs (B2) and (B7) gives

lim
νy→0

c1 = lim
νy→0

2�ys j[
�y j + �y j−1

] = 1. (B20)

lim
νy→0

c2 = − lim
νy→0

η−1

(
νy

�y j

2

)
η−1

(
νy

�y j−1

2

) c1. (B21)

Using the limiting results of eqs (B7) and (B20) gives

lim
νy→0

c2 = −1. (B22)

Eqs (B13), (B15), (B16), (B20) and (B22) give values for the set of coefficients a ≡ [a1, a2, a3] and c ≡ [c1, c2] in the limit νy → 0,
and eq. (B18) gives the set of coefficients b ≡ [b1, b2] in the limit νx → 0; these are exactly the same as corresponding coefficients for the
standard FD approximations in eqs (9) and (10). Similarly, we can show that the exponential FD approximations of all the other x , y, and
z-derivatives tend to the standard FD, respectively, in the limit when νx , νy and νz → 0.

A P P E N D I X C : E X P O N E N T I A L F I N I T E - D I F F E R E N C E E Q UAT I O N S

The staggered grid exponential FD approximations to the x-, y- and z-projections of eq. (5), that is eqs (6), (7) and (8), respectively read

2

�xiη0

(
νx

i+ 1
2 , j,k

�xi
2

)⎡⎢⎣�y jη0

(
ν

y

i+ 1
2 , j,k

�y j

2

)
+ �y j−1η0

(
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(C3)

where �xi , �y j and �zk are, respectively, the length, width and height of the grid cell with main node (xi , y j , zk) located at the top left
corner (Fig. 1); η−1(νh�h) = 1

2 [exp(νh�h) + exp(−νh�h)] and η0(νh�h) = 1
2νh�h [exp(νh�h) − exp(−νh�h)] for h = x, y or z.
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A P P E N D I X D : L E A D I N G T E R M S O F T RU N C AT I O N E R RO R

We first consider ∂2
y Ex (r) and revisit the standard FD approximation by considering a set of monomials {1, xyz, x2 y2z2, x3 y3z3, . . . . . .}.

Application of operator L2y[�y j−1,�y j , a] defined in eq. (14) to these monomials yields
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[
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4
]
, (D5)

etc. at x = xi + �xi
2 , y = y j and z = zk .

We can also compute L2y[�y j−1, �y j , a]xm ym zm , where m = 0, 1, 2, 3, . . . , at y = 0 and denote them as Lm
2y[�y j−1, �y j , a]. We

have
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and for k = 2, 3, 4, . . . . . .
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2k + a3�y j−1
2k
]
. (D10)

In the standard FD, the fields Ex (r), Ey(r) and Ez(r) are taken as a linear combination of monomials, for example Ex (r) = e0 + e1xyz +
e2x2 y2z2 + · · · , with constants e0, e1, e2. . . . Thus, we have

L2y

[
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]
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Using the expressions for L2y[�y j−1, �y j , a]xm ym zm for m = 0, 1, 2, . . . from eqs (D1) to (D5), and Lm
2y[�y j−1, �y j , a] from eqs

(D6) to (D10) we have,
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]
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[
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] (
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[
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] (
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] (
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= L0
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]
∂y Ex (r)
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]
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y Ex (r) + · · ·

+ 1

m!xm zm
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[
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]
∂m

y Ex (r) + · · · . (D13)

The set of coefficients a for the standard FD method is obtained by setting L2y[�y j−1, �y j , a]1 = 0, L2y[�y j−1, �y j , a]xyz = 0
and L2y[�y j−1, �y j , a]x2 y2z2 = 0. Eqs (D1) and (D6) imply that L2y[�y j−1, �y j , a]1 = 0 is equivalent to L0

2y[�y j−1, �y j , a] = 0; eqs
(D1), (D2), (D6) and (D7) imply that the pair of conditions L2y[�y j−1, �y j , a]1 = 0 and L2y[�y j−1, �y j , a]xyz = 0 is equivalent to
L0

2y[�y j−1, �y j , a] = L1
2y[�y j−1, �y j , a] = 0; and so on. Therefore, to obtain a for the standard FD, we need to solve L0

2y[�y j−1, �y j , a] =
0, L1

2y[�y j−1, �y j , a] = 0 and L2
2y[�y j−1, �y j , a] = 0. The solutions to these three equations yield the coefficients: a1 = �y j−1

�ys j
, a2 = −2

and a3 = �y j

�ys j
. These are the same as the coefficients in eq. (9). Moreover, for these values, we notice that Lk

2y[�y j−1, �y j , a] �= 0 for
k = 3, 4, 5, . . .. Therefore, eq. (D13) implies

L2y

[
�y j−1, �y j , a

]
Ex (r) = 1

3!x3z3
L3

2y

[
�y j−1, �y j , a

]
∂3

y Ex (r) + 1

4!x4z4
L4

2y

[
�y j−1,�y j , a

]
∂4

y Ex (r) + · · · . (D14)

Using eqs (D9) and (D10) in eq. (D14) and substituting the values of a1 and a3 for the standard FD approximation we get

L2y

[
�y j−1, �y j , a

]
Ex (r) = −1

3

(
�y j − �y j−1

)
∂3

y Ex (r) − 1

12

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂4

y Ex (r) + · · · . (D15)

Therefore, the leading terms of the truncation error for the standard FD approximation are

τ std
2y (r) = −1

3

(
�y j − �y j−1

)
∂3

y Ex (r) − 1

12

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂4

y Ex (r) . (D16)

It is important to note that the first leading term of the error contains a factor ∂3
y Ex (r) and a PDE ∂3

y Ex (r) = 0 is the one which
has three independent solutions and their linear combination is of the form Ex (r) = ψ1(x, z) + ψ2(x, z)y + ψ3(x, z)y2, where coefficients
ψ1(x, z), ψ2(x, z) and ψ3(x, z) are some functions of variables x and z. For ψ1(x, z) = 1, ψ2(x, z) = xz and ψ3(x, z) = x2z2, the three linear
independent solutions are {1, xyz, x2 y2z2} which are the basis functions for the standard FD method. Moreover, if the cell size is uniform,
that is �y j = �y j−1, the first leading term in eq. (D16) will be zero. We further notice that L3

2y[�y j−1, �y j , a] will also be zero for a uniform
grid. Therefore, we need to consider {1, xyz, x2 y2z2, x3 y3z3} as the basis functions and hence a term with the factor ∂4

y Ex (r) in the leading
terms. A PDE ∂4

y Ex (r) = 0 is now the one that has four independent solutions. These four solutions can be the new set of basis functions
{1, xyz, x2 y2z2, x3 y3z3}.

In the exponential FD approximations, a PDE (∂3
y − ν2

y∂y)Ex (r) = 0 is the one which has three independent solutions that can be the
exponential FD basis functions {1, exp[±(νx x + νy y + νz z)]}. Following the analogy of the standard FD approximations, the first leading
term of the error in the exponential FD should be of the form

A1

(
∂3

y − ν2
y∂y

)
Ex (r) . (D17)

The coefficient of ∂y Ex (r) should be the same in eqs (D13) and (D17), that is

A1 = − 1

ν2
y xz

L1
2y

[
�y j−1, �y j , a

] = 1

ν2
y�y j−1�y j

[
a1�y j − a3�y j−1

]
. (D18)

Using the expression for a1 and a3 from eqs (15) and (16)

A1 = −�y j

η0

(
νy�y j

)− η0

(
νy�y j−1

)
η0

(
νy�y j−1

)
Q
(
νy, �y j−1,�y j

) , (D19)

where Q(νy, �y j−1, �y j ) = {η−1(νy�y j ) − 1} + {η−1(νy�y j−1) − 1} �y j

�y j−1

η0(νy�y j )

η0(νy�y j−1) with η−1(νy�y) = 1
2 [exp(νy�y) + exp(−νy�y)] and

η0(νy�y) = 1
2νy�y [exp(νy�y) − exp(−νy�y)].
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If the grid is uniform, we need to consider a higher order term since A1 = 0. Let if the set of basis functions for the exponential FD is
{1, xyz, exp[±(νx x + νy y + νz z)]}, then a PDE (∂4

y − ν2
y∂

2
y )Ex (r) = 0 has these basis functions as linear independent solutions. Therefore,

the leading terms of the truncation error read

τ
exp
2y (r) = A1

(
∂3

y − ν2
y∂y

)
Ex (r) + A2

(
∂4

y − ν2
y∂

2
y

)
Ex (r) , (D20)

where A1 is given in eq. (D19) and A2 is obtained by comparing the coefficient of ∂2
y Ex (r) in eqs (D13) and (D20). This comparison implies,

A2 = − 1

2!ν2
y x2z2

L2
2y

[
�y j−1, �y j , a

] = 1

2ν2
y�y j−1�y j

[
a1�y j

2 + a3�y j−1
2 − 2�y j−1�y j

]
. (D21)

Using the expression for a1 and a3 from eqs (15) and (16)

A2 = − 1

2ν2
y

[
2 − ν2

y

Q
(
νy, �y j−1, �y j

)
{

�y j
2 + �y j−1�y j

η0

(
νy�y j

)
η0

(
νy�y j−1

)
}]

. (D22)

To obtain the leading terms of the error for FD approximation of ∂y∂x Ey(r), we first compute the leading terms of the error for
∂ Ey (x,y,z)

∂x |i+ 1
2 , j,k followed by one for ∂ Ey (x,y,z)

∂y |i+ 1
2 , j,k for both FD approximations.

Following the above procedure, we can easily show that the application of operators L1x [�xi , b] and L1y[�y j−1,�y j , c] on Ey(r) with
monomials as basis functions gives

L1x [�xi , b] Ey (r) = − 1

24
�xi

2∂3
x Ey (r) − 1

1920
�xi

4∂5
x Ey (r) + · · · , (D23)

L1y

[
�y j−1, �y j , c

]
Ey (r) = −1

4

(
�y j − �y j−1

)
∂2

y Ey (r) − 1

24

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂3

y Ey (r) + · · · . (D24)

Therefore, the leading terms of the truncation error for the standard FD in approximating ∂ Ey (x,y,z)
∂x |i+ 1

2 , j,k and ∂ Ey (x,y,z)
∂y |i+ 1

2 , j,k are,
respectively,

τ std
1x (r) = − 1

24
�xi

2∂3
x Ey (r) , (D25)

τ std
1y (r) = −1

4

(
�y j − �y j−1

)
∂2

y Ey (r) − 1

24

(
�y j

2 + �y j−1
2 − �y j�y j−1

)
∂3

y Ey (r) . (D26)

The corresponding leading terms of the error for the exponential FD are

τ
exp
1x (r) = − 1

ν2
x

[
η0

(
νx

�xi
2

)− 1

η0

(
νx

�xi
2

)
] (

∂3
x − ν2

x ∂x

)
Ey (r) , (D27)

τ
exp
1y (r) = C1

(
∂2

y − ν2
y

)
Ey (r) + C2

(
∂3

y − ν2
y∂y

)
Ey (r) , (D28)

where C1 = − 2
ν2

y R(νy ,�y j−1,�y j )
[

η−1(νy
�y j

2 )−η−1(νy
�y j−1

2 )

η−1(νy
�y j−1

2 )
] and C2 = − 1

ν2
y
[1 − 1

R(νy ,�y j ,�y j−1) {�y j + �y j−1
η−1(νy

�y j
2 )

η−1(νy
�y j−1

2 )
}], with R(νy, �y j−1, �y j )

= �y jη0(νy
�y j

2 ) + �y j−1η0(νy
�y j−1

2 )
η−1(νy

�y j
2 )

η−1(νy
�y j−1

2 )
.

To compute the leading terms of the error in the mixed derivative ∂y∂x Ey(r), consider,

∂2 Ey (x, y, z)

∂y∂x

∣∣∣∣
i+ 1

2 , j,k

= ∂

∂y

[
∂ Ey (x, y, z)

∂x

]
i+ 1

2 , j,k

(D29)

= ∂

∂y

[
Ey (x + �xi , y, z) − Ey (x, y, z)

�xi
+ τ std

1x (x, y, z) + · · ·
]

i+ 1
2 , j,k

(D30)

= 1

�xi

[
Ey

(
x + �xi , y + �y j

2 , z
)

− Ey

(
x + �xi , y − �y j−1

2 , z
)

�ys j
+ τ std

1y (x + �xi , y, z)

−
Ey

(
x, y + �y j

2 , z
)

− Ey

(
x, y − �y j−1

2 , z
)

�ys j
− τ std

1y (x, y, z) + · · ·
]

+ ∂yτ
std
1x (x, y, z) + · · · (D31)
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=
[

Ey

(
x + �xi , y + �y j

2 , z
)

− Ey

(
x + �xi , y − �y j

2 , z
)

− Ey

(
x, y + �y j

2 , z
)

+ Ey

(
x, y − �y j

2 , z
)

�xi�ys j

+∂xτ
std
1y (x, y, z) + ∂yτ

std
1x (x, y, z) + · · · , (D32)

since ∂xτ
std
1y (x, y, z) = {τ std

1y (x + �xi , y, z) − τ std
1y (x, y, z)}/�xi .

Therefore, the leading terms of the truncation error in approximating ∂y∂x Ey(r) with the standard FD are

τ std
2xy (r) = ∂xτ

std
1y (r) + ∂yτ

std
1x (r) , (D33)

where τ std
1x (r) and τ std

1y (r) are given in eqs (D25) and (D26), respectively.
Similarly, the leading terms of the truncation error in approximating ∂y∂x Ey(r) with the exponential FD are

τ
exp
2xy (r) = ∂xτ

exp
1y (r) + ∂yτ

exp
1x (r) , (D34)

where τ
exp
1x (r) and τ

exp
1y (r) are given in eqs (D27) and (D28), respectively.
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