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SUMMARY

Implementing sharp internal interfaces in finite-difference
schemes with high spatial accuracy is challenging. The im-
plementations of interfaces are generally considered accurate
to at best second order. The natural way to describe an abrupt
change in material parameters is by the use of the Heaviside
step function. However, the implementation of the Heaviside
step function must be consistent with the discrete sampling
on the finite-difference grid. Assuming that the step function
takes on the value zero up to some node location and then unity
from thereon results in an incorrect wavenumber representa-
tion of the Heaviside step function so this representation must
be incorrect. However, starting with the proper wavenumber
representation of the Heaviside step function and then trans-
forming this spectrum to the space domain give much better
accuracy. The interface location appears as a proportionality
factor in the phase in the wavenumber domain and can be al-
tered continuously. Thus, the interface can be located any-
where between two node locations. This is a key factor for
avoiding stair-case effects from the fields when doing 2D and
3D finite-difference simulations. The proposed method can be
used for all systems of partial differential equations that for-
mally can be expressed as a material parameter times a dy-
namic field on one side of the equal sign and with spatial
derivatives on the other side of the equal sign. For geophys-
ical simulations the most important cases will be the Maxwell
equations and the acoustic and elastic wave equations.

INTRODUCTION

Despite extensive developments of high-order finite-difference
schemes over the last four decades, the method is only first or-
der accurate when it comes to simulating sharp internal material-
parameter discontinuities, if no medium averaging techniques
are used (Gustaffson and Wahlund, 2004; Symes and Vdov-
ina, 2009). Alternatively, the finite difference method can be
considered second order accurate with respect to implementa-
tion of interfaces if parameter averaging of the type proposed
by Moczo et al. (2002) is used (Vishnevsky et al., 2014). The
low order accuracy favors grids with short spatial steplengths
relative to typical wavelengths. On the other hand, both the
CPU time and the memory size required to simulate a 3D prob-
lem with finite differences are drastically reduced with large
steplengths. One problem with increasing the steplength is the
potential increase in the spatial dispersion error. This problem
can be mitigated by using a pseudo-spectral implementation
for the numerical differentiation or the spatial dispersion error
can be kept small in a controlled manner by the application
of high-order finite-difference operators. Pseudo-spectral and
high-order finite-difference methods can, given that high accu-
racy at late times is mandatory, propagate fields on grids that
are 10 to 20 times coarser than those required for second order

spatial schemes. The problem is obvious if the implementa-
tion of internal interfaces is only second order accurate: These
high-order methods cannot be fully utilized since the error re-
lated to interface locations increases to an unacceptable level.

One attractive property of explicit finite differences is the ease
of implementation. Surely, complications increase when ex-
ternal boundaries are implemented in order to simulate a free
surface or absorbing boundary conditions at the sidewalls of
the computational domain, still, the implementation effort is
low compared to many other simulation schemes. Likewise,
explicit finite differences are numerically very efficient when
properly implemented and serve as the simulation engine in
numerous reverse time migration and inversion schemes. The
simulation engine must have a low and predictable numerical
error. Typical propagation errors such as spatial and temporal
dispersion are well understood and can be reduced to a desired
or tolerable minimum by high-order methods. Application of
high-order methods to reduce temporal dispersion is discussed
by Dablain ( 1986), Tal-Ezer ( 1986) and Etgen (1989). Alter-
natively, a post modeling temporal dispersion correction can
be performed (Stork, 2013; Anderson et al., 2015).

The interface problem is not too severe in many real data pro-
cessing cases since for example the seismic migration veloc-
ity model is smooth or the seismic velocity or the electromag-
netic conductivity model retrieved by inversion is smooth due
to limited resolution. However, there may be cases where an
accurate description of a sharp interface is required. One ex-
ample can be the seabed. The location of this interface is
often known with higher accuracy than formation interfaces
since it can be measured by echo sounding. It is also a high
impedance contrast. This is particularly the case for marine
CSEM surveys. For both electromagnetic and seismic simula-
tions it might be that accurate simulation results for sediment-
salt boundaries are required. These boundaries are strong re-
flectors and cannot be well described unless a sharp transi-
tion is implemented with sufficient accuracy. Here I propose
a methodology to simulate sharp internal material-parameter
discontinuities at arbitrary positions and discuss some of the
limitations with this approach.

THEORY

The problem of properly implementing sharp internal material-
parameter discontinuities is present even for very simple finite-
difference modeling schemes like the 1D acoustic wave equa-
tion. The acoustic wave propagation problem is determined by
Newton’s second law and the constitutive relation,

ρ(z)∂tvz(z,t) = ∂zσ(z,t)+δ (z− zs) fz(t),

κ(z)∂tσ(z,t) = ∂zvz(z,t). (1)

Hereρ is density,vz is particle velocity in thez-direction,σ is
stress,δ is a Dirac delta distribution,fz is the time function for
a force density in thez-direction andκ is compliance.

10.1190/segam2018-2994775.1
Page    3893

© 2018 SEG
SEG International Exposition and 88th Annual Meeting

D
ow

nl
oa

de
d 

11
/0

1/
18

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



FD internal interfaces

In finite differences an interface is implemented as a jump in
a material parameter. A jump can be described by means of
the Heaviside step function. Let us give the upper halfspace
index 1 and the lower halfspace index 2. Let the Heaviside
step function be denotedH(z) with

H(0−) = 0,

H(0) = 1
2 ,

H(0+) = 1, (2)

given infinite spatial bandwidth. A sharp interface in compli-
ance is then described by,

κ(z) = κ1 +H(z− zb)∆κ,

∆κ = κ2−κ1. (3)

Step functions must necessarily be bandlimited on a grid with

Figure 1: Two representations of the step function. The black
curve is a transition from zero to unity from one node to the
next. The green curve is a representation of the stepfunction
where the transition from zero to unity is properly bandlimited.
a) Wavenumber spectrum b) Space domain representation. The
Gibbs phenomenon is visible for the green curve.

a finite steplength. Initially, let us assume that the interface
location is midway between two nodes. The most intuitive

implementation is as follows: Let the stepfunction equal zero
down to a node just above the interface and unity from the
node just below the interface. The Fourier amplitude spectrum
of the stepfunction described above can be found by perform-
ing a discrete Fourier transform of a function that in this ex-
ample is 0 from node 1 to node 250 and 1 from node 251 to
node 1000. The node distance is∆z = 10 m. The amplitude
spectrum as a function of wavenumber is shown with black
squares in Figure 1a. On the other hand, we may calculate the
frequency spectrum of a bandlimited step function,H̃(z− zb),
analytically,

H̃(kz) =
1

∆z
2
kz

sin( 1
2 kz(zm− zb))e

−ikz
1
2(zm + zb)

, (4)

and then include only wavenumbers with absolute value less or
equal to the spatial Nyquist wavenumber,kN

z = π
∆z , in the trans-

form from wavenumber domain to space domain. The variable
zb is the interface location and the variablezm = (Nz−

1
2)∆z

with Nz the number of nodes. The analytical amplitude spec-
trum is plotted with green squares in Figure 1a. It is different
from the spectrum of the function of the intuitive implementa-
tion. The corresponding space domain functions are shown in
Figure 1b. The black curve is just a jump in value from node
250 to node 251. The green curve is the space domain repre-
sentation of equation 4. This curve shows Gibbs oscillations
for nodes 247 to 254. The transition between the upper and
lower medium is slightly softer than the intuitive implementa-
tion.

Note from equation 4 that the interface locationzb can be moved
continuously on the finite-difference grid. No medium averag-
ing is necessary with this implementation of the interface and
it can be demonstrated that the accuracy with this implemen-
tation is much higher than with averaging techniques (Mittet,
2017).

If the compliance is given by equation 3 then we see that we
have a discontinuity on the left-hand side of the second equa-
tion 1. This discontinuity must have a counterpart on the right-
hand side. Thus, the particle velocity is continuous but has
a kink at the interface location such that the derivative of the
field makes a jump. The location of the kink in the particle ve-
locity field is atzb and represents the reflection point (Mittet,
2017).

RESULTS

Several tests for vertically traveling plane waves has been per-
formed in a halfspace model to compare the step function im-
plementation of the interface with an implementation using
harmonic averaging of the bulk modulus and arithmetic aver-
aging of the density. The step-function implementation is used
for compliance and density which both appear in the left-hand
side of equation 1. The source and receiver are at depth 2000
m. The spatial steplength is 10 m. The maximum frequency of
the propagating waveform is 50 Hz with the peak frequency at
20 Hz. The jump in density from the top to the bottom layer is
from 2000 kg/m3 to 4000 kg/m3. The jump in compliance is
such that the velocity jumps from 2000 m/s in the upper layer
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FD internal interfaces

Figure 2: Left column - averaging and right column - step
function, interface at 2495 m. a) and d) Analytical - black and
FD - green. b) and e) Amplitude ratio. c) and f) Time advance
or delay.

to 4000 m/s in the lower layer. Errors are calculated by Fourier
transforming the finite-difference (FD) time domain solution
and the analytical solution for the problem. The complex FD
spectrum is divided by the complex spectrum for the analytical
solution. The modulus of this ratio reveals amplitude errors if
it deviates from unity. The argument (phase) of this ratio is
divided by the angular frequency and reveals traveltime errors
if it deviates from zero.

In the first example the interface is at 2495 m. In this case it
is midway between nodes. The left column in Figure 2 show
the results of using harmonic averaging based on relative vol-
umetric contribution for the bulk modulus and arithmetic aver-
aging of the density also based on relative volumetric contri-
bution. Note that since the interface is midway between nodes
the medium changes abruptly from the node at 2490 m to the
node at 2500 m. The transition is similar to the black curve in
Figure 1. The type of error introduced is mainly in terms of a
frequency dependent amplitude deviation. It exceeds 10 per-
cent at 33 Hz. The right column in Figure 2 show the results of
using a bandlimited approximation to the step function at the
interface. Both amplitude and traveltime errors are negligible.

In the second example the interface is at 2500 m. In this case
it is at the location of a node. The left column in Figure 3
show the results of using harmonic averaging based on relative
volumetric contribution. Note that the node value at 2500 m
is averaged since the interface coincides with this node posi-
tion. There is in this case a large amplitude error of close to
50 percent ant 50 Hz. The traveltime error is less severe and
gradually approaching 1 ms delay at 50 Hz. The right column
in Figure 3 show the results of using a bandlimited approxi-
mation to the step function at the interface. Both amplitude

Figure 3: Left column - averaging and right column - step
function, interface at 2500 m. a) and d) Analytical - black and
FD - green. b) and e) Amplitude ratio. c) and f) Time advance
or delay.

and traveltime errors are small for frequencies less than 40 Hz.
From 40 to 50 Hz the amplitude error increases up to approx-
imately 20 percent and in the same frequency interval there is
an increased time advance of up to 2 ms. The results using the
step-function are acceptable since most of the energy in the
propagated waveform is below 40 Hz.

Snapshots of particle velocity from 2D simulations are shown
in Figure 4. The interface is marked with a white line and
is dipping with 18 degrees. The model consists of two half-
spaces with the same compliance and density contrasts as for
the 1D models discussed above. The top halfspace has a prop-
agation velocity of 2000 m/s and the lower halfspace has a
propagation velocity of 4000 m/s. Spatial steplengths are 10
m for both directions and the frequency content of the source
is identical to the 1D cases above. The line of receiver stations
is marked with the blue line. The displayed particle velocity
is rotated with 18 degrees such that the vertical component of
particle velocity is normal to the interface. Figure 4a show the
result of using harmonic averaging based on relative volumet-
ric contribution for the bulk modulus and arithmetic averaging
of the density also based on relative volumetric contribution.
The diffractions due to the staircase effect are clearly visible
in Figure 4a. Figure 4b shows the results of using a bandlim-
ited approximation to the step function at the interface. The
diffractions due to the staircase effect are almost negligible in
this case.

Zero offset data for coinciding source and receiver position is
shown in Figure 5. The left column in Figure 5 show the results
of using averaging at the interface and the right column shows
the results of using a bandlimited approximation to the step
function at the interface. The results using the step-function

10.1190/segam2018-2994775.1
Page    3895

© 2018 SEG
SEG International Exposition and 88th Annual Meeting

D
ow

nl
oa

de
d 

11
/0

1/
18

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



FD internal interfaces

Figure 4: Vertical component of the particle velocity. The
vertical component is normal to the interface marked with the
white line. Receiver line in blue and source position at the start
of the receiver line. a) Harmonic averaging. b) Step-function
implementation.

Figure 5: Left column - averaging and right column - step
function. a) and d) Analytical - black and FD - green. b) and
e) Amplitude ratio. c) and f) Time advance or delay.

implementation are clearly the best. The time advance in Fig-
ure 5c indicates that the effective interface position is approxi-
mately 1 m above the true interface position. The degradation
in accuracy above 33 Hz is due to the staircase effect. This
error contribution is predicted and explained in Mittet and Bu-
land (1995). Also in the 2D case we see that the step-function
implementation of the interface gives excellent results up to 40
Hz and then some reduction in accuracy above 40 Hz. Actu-
ally, the results for the zero offset 2D case with step-function
implementation of the interface (right-hand column in Figure
5) are very similar to the corresponding 1D results for the true
interface coinciding with a node location (right-hand column
in Figure 3).

CONCLUSIONS

A naive implementation of an interface as a jump from one
value at one node to a different value at the next node, even for
the ideal case where the interface is midway between nodes,
gives unacceptable modeling errors. The modeling errors can
be reduced if the jump is properly bandlimited with respect to
the sampling of the simulation grid.

Interfaces can be implemented at arbitrary locations in a coarse
grid. Information regarding the location of an interface must
be imprinted in the modeling grid. This can be done by starting
from the wavenumber representation of a properly bandlim-
ited Heaviside stepfunction and transforming it to the space
domain. The source frequency must be constrained so that the
spatial sampling is at 4 to 5 grid points per shortest wavelength
or above, depending on the problem at hand.
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