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Summary 
Non-linear seismic inversion faces difficulties with multiple local minima due to cycle skipping. It is possible to 
demonstrate that cycle skipping is unlikely to appear in the diffusive domain with a very common definition of the 
error. 
Seismic data can be transformed to the diffusive domain and inverted to obtain intermediate estimates of the 
velocity model. This intermediate velocity model may serve as initial models for inversion processing in the wave 
domain or may serve as a velocity model for reverse time migration. 
One of the properties of the wave to diffusion transform is that it effectively extracts refractions from a common 
shot gather or common receiver gather containing reflections, diffractions and refractions. 
 



Introduction

Non-linear seismic inversion faces difficulties with multiple local minima due to cycle skipping. Several
strategies are proposed to mitigate this problem. One option is to initiate the inversion with very low
frequencies, of the order of 1 Hz, and then add higher frequencies at later iterations (Sirgue and Pratt,
2004). A problem, in the marine case, is that pressure amplitudes due to an airgun are small at 1 Hz.
The sensors must also be sufficiently sensitive in the low frequency regime.

A second option is to apply transform methods to standard seismic data (Shin and Cha, 2009) with the
purpose of getting a smooth initial model in place that roughly accounts for the traveltimes. An interest-
ing approach for initial model estimation, based on wavefield transforms, was proposed by Virieux et al.
(2012). The idea is to use a wave-to-diffusion transform on both observed and predicted data. Actually,
such a transform can be used to obtain diffusive electromagnetic fields from an electromagnetic wave
simulation (Lee et al., 1989). Maaø (2007) and Mittet (2010) show that this approach is numerically
efficient for modeling marine controlled source electromagnetic (MCSEM) data. Virieux et al. (2012)
took the approach as far as transforming a seismic shot gather to a diffusive shot gather and by that
exposing the simplification of the data in the transformed time domain. Here I take this idea one step
further and test it in an inversion setting. I will do this MCSEM style, thus in the frequency domain.

One of the properties of the wave-to-diffusion transform is that it effectively extracts refractions from
a common shot gather or common receiver gather containing reflections, diffractions and refractions.
This is explained in detail in Mittet (2015) and is a main motivation for testing it out in an inversion
approach. A second property of the transform is that the field spectrum in the transformed, diffusive,
domain is fairly insensitive to the propagating waveform (Mittet, 2010). Hence, this approach to the
inversion of dominantly refraction data can be performed on data generated with a standard airgun array.
A third important fact is that cycle skipping is not a problematic issue in the diffusion domain. The
phase is closely linked to the amplitude loss since the real and the imaginary part of the wavenumber
are of similar size. It is possible to demonstrate that cycle skipping is unlikely to appear in the diffusive
domain with the type of error functional used for the scheme discussed here.

Theory

The actual implementation is based on two transforms. The standard Fourier transform is,

ψ(ω) =
∫ T

0
dtψ(t)eiωt, (1)

where T is the duration of the shot record and ω is angular frequency. The wave-to-diffusion transform
is,

ψ′(ω) = ψ(ω′) =
∫ T

0
dtψ(t)eiω

′t, (2)

where the complex transform frequency is, ω′ = (1 + i)
√
ωω0. Here ω0 is a free scaling parameter,

the only requirement is that it must be positive and larger than zero. A practical value for the system
discussed here is ω0 = 1

2 Hz. For simplicity, a constant density, ρ0, is assumed in the following. The
wave equation is for the volumetric stress, σ(x, t) = −P (x, t), where P (x, t) is the pressure at position
x for time t,

∇2σ(x, t)− κ(x)∂2
t σ(x, t) = S(x, t), (3)

where κ(x) the compliance and S(x, t) is a source term. The inversion parameter will be compliance.
The relation to velocity, c(x), is simply, c(x) = [ρ0κ(x)]−

1
2 . A standard Fourier transform of equation

3 gives the equation,

∇2σ(x, ω) + ω2κ(x)σ(x, ω) = S(x, ω), (4)
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whereas by using the wave-to-diffusion transform in equation 2,

∇2σ′(x, ω) + iωκ(x)σ′(x, ω) = S′(x, ω). (5)

The Fréchet derivative for the wave equation, equation 4, is

F(x; xr, ω|xs) = ω2∆V (x)G(x, ω|xr)σ(x, ω|xS), (6)

where xs and xr are source and receiver positions respectively. ∆V (x) is the cell volume. The Fréchet
derivative for the diffusion equation, equation 5, is

F ′(x; xr, ω|xs) = iω∆V (x)G′(x, ω|xr)σ′(x, ω|xS). (7)

For both types of transforms the data error part of the error functional has the same form,

εD =
∑

ω,xr,xs

=
[∆σ(xr, ω|xS)]∗[∆σ(xr, ω|xS)]

[δσ(xr, ω|xS)]2
(8)

where the ∗ denotes complex conjugate and the misfit between observed and predicted data is

∆σ(xr, ω|xS) = σObs(xr, ω|xS)− σPrd(xr, ω|xS). (9)

The data uncertainty model is as discussed in Mittet and Morten (2012),

δσ(xr, ω|xS) ≈
√
γ2|σObs(xr, ω|xS)|2 + η2, (10)

where γ is a multiplicative uncertainty factor of order 1 percent and where η is the ambient noise level.
The data part of the inversion is well defined as we have expressions for the data misfit, the data un-

Figure 1 The true model and 3 common receiver gathers. The shot positions are marked with white dots.
The receiver positions are marked with blue triangles. An orange ring marks the 3 receivers for which
data are plotted.

certainty and the Fréchet derivatives. The model space part of the error functional is a mild horizontal
smoothing. The update for the compliance is based on a Gauss-Newton trust-region method. The wave
equation (equation 3) is solved in the time domain. For diffusion domain inversion the transform in
equation, 2 is applied to the observed data, the predicted data and the calculation of Green’s functions.
The Fréchet derivative is from equation 7. For the wave domain inversion the transform in equation 1
is applied to the observed data, the predicted data and the calculation of Green’s functions. The Fréchet
derivative is from equation 6. Thus, a simple switch selects between the two approaches, almost all the
inversion code is common for the two schemes.
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Results

The true model is displayed in Figure 1. The shot positions is marked with white dots. The receiver

Figure 2 Data misfit functions in the transformed domain. The misfit functions are normalized by the
data uncertainties and are kernels for the error functional.

positions are marked with blue triangles. The shot separation is 200 m and the receiver separation is 1
km. Inversion is first performed in the diffusive domain using 7 log-spaced frequencies. The transform in
equation 2 is complex and has an exponential damping term. The product of the field and the exponential
damping term at the final recording time, T must be close to zero. Thus, the lowest allowable frequency
in the diffusive domain is a function of the total recording time,

Figure 3 From top to bottom: The initial halfspace model. The intermediate model obtained by inversion
in the transformed domain. The final model obtained by inversion in the frequency domain starting from
the intermediate model.
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f ≥ 1
2πω0

(
ln(ε)
T

)2

, (11)

where ε is a small number. The values ε = 1×10−6, ω0 = 1
2 Hz and T = 20 s as used here gives a lower

limit of 0.15 Hz. The highest useful frequency is given by the same formula as equation 11 but with T
replaced by T ′ where T ′ is the time where the first refraction clearly separates from the first reflections.
For the configuration used here we find T ′ ≈ 2 s and hence an upper limit of 15 Hz. For the inversion
the 7 frequencies ranged from 0.3 Hz to 4.8 Hz.

The initial model is a halfspace with velocity 2000 m/s in the formation. The misfit normalized by the
data uncertainty for the first iteration is shown in Figure 2. The behavior is very similar to MCSEM data
(Mittet and Morten, 2012). The initial halfspace model is shown at the top of Figure 3. The result of the
inversion in the diffusive domain is shown in the middle of Figure 3. The result is smooth but indications
of the low velocity inclusion at “Distance” 16 km and “Depth” 3 km is present.

The final inversion is performed in the wave domain. The initial model for the wave domain inversion
is the final model from the diffusive domain inversion. Nine equally spaced frequencies from 1 to 9
Hz was used in this inversion. Several attempts were made, starting the inversion directly in the wave
domain and from a half-space model. Different sets of frequencies were tested including sequential
single frequency inversions starting at 1 Hz. All final models were inferior to the final model in Figure
3. A more sophisticated wave-domain inversion scheme, with targeted prepossessing of the input data,
may make it possible to go all the way from the half-space model to the final model in Figure 3 directly
in the wave domain. The requirement for data prepossessing, if the inversion is started in the diffusive
domain, is that noise prior to the first arrival is muted. No muting after the first arrival is required, the
wave-to-diffusion transform does an effective job in extracting the refractions.

Conclusions

Seismic data can be transformed to the diffusive domain and inverted to obtain intermediate estimates
of the velocity model. This intermediate velocity model may serve as initial models for inversion pro-
cessing in the wave domain or may serve as a velocity model for reverse time migration.

The shape of the wavefield spectrum in the diffusive domain is fairly insensitive to the shape of the
wavefield spectrum in the wave domain. Thus, standard airgun data can be used for this type of diffusive
inversion. There is no direct need for a specialized source. However, a low frequency source may give a
somewhat better signal to noise ratio also in the diffusive domain.
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