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SUMMARY

Non-linear seismic inversion faces difficulties with multiple
local minima due to cycle skipping. It is possible to demon-
strate that cycle skipping is unlikely to appear in the diffusive
domain with a very common definition of the error functional.
Seismic data can be transformed to the diffusive domain and
inverted to obtain an intermediate estimates of the velocity
model. This intermediate velocity model may serve as ini-
tial model for inversion processing in the wave domain or may
serve as a velocity model for reverse time migration.
One of the properties of the wave to diffusion transform is that
it effectively extracts refractions from a common shot gather
or common receiver gather containing reflections, diffractions
and refractions.

INTRODUCTION

Non-linear seismic inversion faces difficulties with multiple
local minima due to cycle skipping. Several strategies are pro-
posed to mitigate this problem. One option is to initiate the
inversion with very low frequencies, of the order of 1 Hz, and
then add higher frequencies at later iterations (Sirgue and Pratt,
2004). A problem, in the marine case, is that pressure ampli-
tudes due to an airgun are small at 1 Hz. The sensors must also
be sufficiently sensitive in the low frequency regime.

A second option is to apply transform methods to standard
seismic data (Shin and Cha, 2009) with the purpose of getting
a smooth initial model in place that roughly accounts for the
traveltimes. An interesting approach for initial model estima-
tion, based on wavefield transforms, was proposed by Virieux
et al. (2012). The idea is to use a wave-to-diffusion transform
on both observed and predicted data. Actually, such a trans-
form can be used to obtain diffusive electromagnetic fields
from an electromagnetic wave simulation (Lee et al., 1989).
Maaø (2007) and Mittet (2010) show that this approach is nu-
merically efficient for modeling marine controlled source elec-
tromagnetic (MCSEM) data. Virieux et al. (2012) took the
approach as far as transforming a seismic shot gather to a dif-
fusive shot gather and by that exposing the simplification of
the data in the transformed time domain. Here I take this idea
one step further and test it in an inversion setting. I will do this
MCSEM style, thus in the frequency domain.

One of the properties of the wave-to-diffusion transform is that
it effectively extracts refractions from a common shot gather
or common receiver gather containing reflections, diffractions
and refractions. This is explained in detail in Mittet (2015) and
is a main motivation for testing it out in an inversion approach.
A second property of the transform is that the field spectrum
in the transformed, diffusive, domain is fairly insensitive to the
propagating waveform (Mittet, 2010). Hence, this approach to
the inversion of dominantly refraction data can be performed

on data generated with a standard airgun array. A third impor-
tant fact is that cycle skipping is not a problematic issue in the
diffusion domain. The phase is closely linked to the amplitude
loss since the real and the imaginary part of the wavenumber
are of similar size. It is possible to demonstrate that cycle skip-
ping is unlikely to appear in the diffusive domain with the type
of error functional used for the scheme discussed here.

THEORY

The actual implementation is based on two transforms. The
standard Fourier transform is,

ψ(ω) =
∫ T

0
dtψ(t)eiωt , (1)

where T is the duration of the shot record and ω is angular
frequency. The wave-to-diffusion transform is,

ψ
′(ω) = ψ(ω ′) =

∫ T

0
dtψ(t)eiω ′t , (2)

where the complex transform frequency is, ω ′ = (1+ i)
√

ωω0.
Here ω0 is a free scaling parameter, the only requirement is
that it must be positive and larger than zero. A practical value
for the system discussed here is ω0 = 1

2 Hz. For simplicity, a
constant density, ρ0, is assumed in the following. The wave
equation is for the volumetric stress, σ(x, t) =−P(x, t), where
P(x, t) is the pressure at position x for time t,

∇
2
σ(x, t)−κ(x)∂ 2

t σ(x, t) = S(x, t), (3)

where κ(x) the compliance and S(x, t) is a source term. The
inversion parameter will be compliance. The relation to ve-
locity, c(x), is simply, c(x) = [ρ0κ(x)]−

1
2 . A standard Fourier

transform of equation 3 gives the equation,

∇
2
σ(x,ω)+ω

2
κ(x)σ(x,ω) = S(x,ω), (4)

whereas by using the wave-to-diffusion transform in equation
2,

∇
2
σ
′(x,ω)+ iωκ(x)σ ′(x,ω) = S′(x,ω). (5)

The Fréchet derivative for the wave equation, equation 4, is

F (x;xr,ω|xs) = ω
2
∆V (x)G(x,ω|xr)σ(x,ω|xS), (6)

where xs and xr are source and receiver positions respectively.
∆V (x) is the cell volume. The Fréchet derivative for the diffu-
sion equation, equation 5, is

F ′(x;xr,ω|xs) = iω∆V (x)G′(x,ω|xr)σ ′(x,ω|xS). (7)

For both types of transforms the data error part of the error
functional has the same form,

ε
D =

∑
ω,xr ,xs

=
[∆σ(xr,ω|xS)]∗[∆σ(xr,ω|xS)]

[δσ(xr,ω|xS)]2
(8)
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Wave to diffusion transform

Figure 1: The true model and 3 common receiver gathers. The shot positions are marked with white dots. The receiver positions
are marked with blue triangles. An orange ring marks the 3 receivers for which data are plotted.

Figure 2: Data misfit functions in the transformed domain. The misfit functions are normalized by the data uncertainties and are
kernels for the error functional.

where the ∗ denotes complex conjugate and the misfit between
observed and predicted data is

∆σ(xr,ω|xS) = σ
Obs(xr,ω|xS)−σ

Prd(xr,ω|xS). (9)

The data uncertainty model is as discussed in Mittet and Morten
(2012),

δσ(xr,ω|xS)≈
√

γ2|σObs(xr,ω|xS)|2 +η2, (10)

where γ is a multiplicative uncertainty factor of order 1 percent
and where η is the ambient noise level.

The data part of the inversion is well defined as we have ex-
pressions for the data misfit, the data uncertainty and the Fréchet
derivatives. The model space part of the error functional is
a mild horizontal smoothing. The update for the compliance
is based on a Gauss-Newton trust-region method. The wave
equation (equation 3) is solved in the time domain. For diffu-
sion domain inversion the transform in equation, 2 is applied
to the observed data, the predicted data and the calculation of
Green’s functions. The Fréchet derivative is from equation 7.

10.1190/segam2018-2992113.1
Page    1239

© 2018 SEG
SEG International Exposition and 88th annual Meeting

D
ow

nl
oa

de
d 

11
/0

1/
18

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Wave to diffusion transform

Figure 3: From top to bottom: The initial halfspace model. The intermediate model obtained by inversion in the transformed
domain. The final model obtained by inversion in the frequency domain starting from the intermediate model.

For the wave domain inversion the transform in equation 1 is
applied to the observed data, the predicted data and the cal-
culation of Green’s functions. The Fréchet derivative is from
equation 6. Thus, a simple switch selects between the two ap-
proaches, almost all the inversion code is common for the two
schemes.

RESULTS

The true model is displayed in Figure 1. The shot positions
are marked with white dots. The receiver positions are marked
with blue triangles. The shot separation is 200 m and the re-

ceiver separation is 1 km. Inversion is first performed in the
diffusive domain using 7 log-spaced frequencies. The trans-
form in equation 2 is complex and has an exponential damping
term. The product of the field and the exponential damping
term at the final recording time, T must be close to zero. Thus,
the lowest allowable frequency in the diffusive domain is a
function of the total recording time,

f ≥ 1
2πω0

(
ln(ε)

T

)2

, (11)

where ε is a small number. The values ε = 1×10−6, ω0 = 1
2

Hz and T = 20 s as used here gives a lower limit of 0.15 Hz.
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Wave to diffusion transform

The highest useful frequency is given by the same formula as
equation 11 but with T replaced by T ′ where T ′ is the time
where the first refraction clearly separates from the first reflec-
tions. For the configuration used here we find T ′ ≈ 2 s and
hence an upper limit of 15 Hz. For the inversion the 7 frequen-
cies ranged from 0.3 Hz to 4.8 Hz.

The initial model is a halfspace with velocity 2000 m/s in the
formation. The misfit normalized by the data uncertainty for
the first iteration is shown in Figure 2. The behavior is very
similar to MCSEM data (Mittet and Morten, 2012). The initial
halfspace model is shown at the top of Figure 3. The result of
the inversion in the diffusive domain is shown in the middle
of Figure 3. The result is smooth but indications of the low
velocity inclusion at “Distance” 16 km and “Depth” 3 km is
present.

The final inversion is performed in the wave domain. The ini-
tial model for the wave domain inversion is the final model
from the diffusive domain inversion. Nine equally spaced fre-
quencies from 1 to 9 Hz were used in this inversion. Several
attempts were made, starting the inversion directly in the wave
domain and from a half-space model. Different sets of fre-
quencies were tested including sequential single frequency in-
versions starting at 1 Hz. All final models were inferior to the
final model in Figure 3. A more sophisticated wave-domain in-
version scheme, with targeted prepossessing of the input data,
may make it possible to go all the way from the half-space
model to the final model in Figure 3 directly in the wave do-
main. The requirement for data prepossessing, if the inversion
is started in the diffusive domain, is that noise prior to the first
arrival is muted. No muting after the first arrival is required,
the wave-to-diffusion transform does an effective job in ex-
tracting the refractions.

CYCLE-SKIPPING EFFECTS

The robustness of the diffusive domain inversion with respect
to the halfspace initial model is largely due to the fact that
the wave-to-diffusion transform is effective in extracting re-
fractions as compared to reflections from a common shot or
common receiver gather. It is also worth noting that cycle-
skipping effects behave differently in the diffusive domain as
compared to the wave domain. Cycle-skipping effects are less
common in the diffusive domain even for relatively high fre-
quencies. The reason is that there is a close relationship be-
tween amplitude and traveltime in the diffusive domain since
the wavenumber has equal real and imaginary part. A certain
amount of phase shift due to propagation also implies a cer-
tain amount of exponential damping. This relationship does
not exist in the wave domain where the wavenumber is real.

A rough explanation follows: Assume that the observed and
predicted field can be described by,

DObs = AObseiφ Obs
,

DPrd = APrdeiφ Prd
.

(12)

and that the amplitude factors account for source strength and

transmission and reflection effects between source and receiver.
The phase factor accounts for the propagation effects (time de-
lay) between source and receiver. The kernel of the error func-
tional has the form,

ε = (DObs−DPrd)∗(DObs−DPrd). (13)

To keep the argument simple I further assume that the ampli-
tude factors are approximately equal, that is AObs ≈ APrd ≈ A.
The main contribution to the error functional does come from
misfits in traveltime in this case,

ε ≈ |A|2[(eiφ Obs
− eiφ Prd

)2((eiφ Obs
− eiφ Prd

)], (14)

which simplifies to,

ε ≈ 2|A|2[1− cos(φ Obs−φ
Prd)] = 2|A|2[1− cos(∆φ)], (15)

with ∆φ = φ Obs−φ Prd . The error functional is degenerate in
this case with multiple zeroes for ∆φ = 0±2πn with n≥ 1.

In the diffusive domain we have that the real and imaginary
parts of φ have equal size, φ = (1+ i)β . Under the assumption
that the amplitude factors are approximately equal we have,

ε ≈ |A|2[(ei(1+i)β Obs
− ei(1+i)β Prd

)2((ei(1+i)β Obs
− ei(1+i)β Prd

)], (16)

which simplifies to,

ε ≈ 2|A|2e−(β Obs+β Prd)[cosh(β Obs−β
Prd)− cos(β Obs−β

Prd)], (17)

or,

ε ≈ 2|A|2e−(β Obs+β Prd)[cosh(∆β )− cos(∆β )] (18)

with ∆β = β Obs−β Prd . The error functional is not degener-
ate in this case since the hyperbolic cosine is equal to unity
for zero argument and larger than unity elsewhere. The error
functional can only approach zero if ∆β = 0.

CONCLUSIONS

Seismic data can be transformed to the diffusive domain and
inverted to obtain intermediate estimates of the velocity model.
This intermediate velocity model may serve as initial model
for inversion processing in the wave domain or may serve as a
velocity model for reverse time migration.

The shape of the wavefield spectrum in the diffusive domain
is fairly insensitive to the shape of the wavefield spectrum in
the wave domain. Thus, standard airgun data can be used for
this type of diffusive inversion. There is no direct need for a
specialized source. However, a low frequency source may give
a somewhat better signal to noise ratio also in the diffusive
domain.
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