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SUMMARY

Second-order time integration of the wave equation is numer-
ically efficient with time steps close to the limit set by the
stability criterion. However, the dispersion errors over real-
istic propagation distances are unacceptable with time steps
in this range. A common procedure is to perform a post-
propagation correction on the numerically simulated field. The
post-propagation correction does not always provide a suffi-
ciently accurate result. The reason is explained as a lacking
source correction term. The proper source correction pro-
cedure is identified. Dispersion free results, using second-
order time integration of the wave equation, can be achieved
by applying a time-domain bivariate pre-propagation filter to
all source time functions followed by a time-domain bivariate
post-propagation filter to the simulated field at all recording
positions. The bivariate pre-propagation filter and the bivariate
post-propagation filter are valid for any reasonable simulation
time step. The two filters can be calculated once since they
are independent of the simulation time step and they can be
applied with any modeling scheme that uses second order time
integration.

INTRODUCTION

We are here dealing with correction methods for the time inte-
gration of the wave equation. The term wave equation should
be understood in a wide sense. It can mean the Maxwell equa-
tions for loss-less propagation of electromagnetic fields or wave
equations for acoustic and elastic seismic stress (pressure) and
particle velocity fields. The time integration of the wave equa-
tion can be done with spectral accuracy as demonstrated by
Tal-Ezer (1986) who introduced the Rapid Expansion Method
(REM). However, for some applications, like for example re-
verse time migration (RTM), the REM method must be im-
plemented in a time stepping manner as described by Pestana
and Stoffa (2009, 2010) and by Tessmer (2011). An alterna-
tive to achieving spectral accuracy for the time stepping is to
stay with the second order approximation, but perform proper
dispersion correction procedures.

Spectral accuracy for the time integration was achieved in Mit-
tet (2017) with a method that is due to Anderson et al. (2015).
The formulation of Anderson et al. (2015) is the starting point
also here. It will first be demonstrated that this formulation
is equivalent to applying two frequency domain filters. One
filter is to be applied to the source time function before time
stepping is initiated. The second filter is to be applied on simu-
lated fields after the time stepping has stopped. This approach
have recently been derived by Koene et al. (2017) using an
alternative derivation from the one given here.

The main result presented in this contribution is that the pre-

propagation filter and the post-propagation filter have time do-
main representations that ensures both efficient design and ef-
ficient application. The two filters can be designed such that
they are independent of the simulation time step. This is very
convenient since only two filters need to be designed. Even
if the filter design should take some computer time for large
filters it does not matter since the filters can be used “forever”
and for any modeling scheme based on second order time in-
tegration. The application of the filters are directly in the time
domain so no complex numerical operations are required. This
is in contrast to the frequency domain filters where both the
pre- and the post-propagation filters require combinations of
FFT’s and DFT’s. The application of the time domain filters
are “mult-add” which is numerically very effective on most
computers.

THEORY

Finite-difference simulations in media with variable material-
parameter discontinuities are discussed in Mittet (2017). We
are here dealing with the accuracy of the second-order time
integration of the wave equation, thus to keep the error anal-
ysis as simple as possible a constant velocity model is used.
Likewise, the wave propagation is assumed to be 1D. General-
ization to inhomogeneous media and higher spatial dimensions
is demonstrated for 2D acoustic and elastic simulations in Mit-
tet (2017). Further examples of application of pre-propagation
and post-propagation frequency domain filters are given in Koene
et al. (2017).

The problem analyzed here has the generic form,

1

c2
0

∂ 2
t σ(z,t|zs)−∂ 2

z σ(z,t|zs) = δ (z− zs)S(t). (1)

Herez gives the position of the field,σ . Further on,δ (z−zs) is
the Dirac distribution withzs representing the source locations.
The temporal behavior of the source is given byS(t). The
constant velocity is given byc0. The spatial derivatives are
performed with the pseudo-spectral method to achieve spec-
tral accuracy in the space domain. A second-order temporal
approximation to equation 1 is,

σ(z,t +∆t|zs)−2σ(z,t|zs)+σ(z,t −∆t)|zs)

c2
0(∆t)2

−

∂ 2
z σ(z,t|zs) = δ (z− zs)S(t), (2)

where∆t is the time step.

A temporal Fourier transform of equation 1 gives,

ω2

c2
0

σ(z,ω|zs)+∂ 2
z σ(z,ω|zs) = −δ (z− zs)S(ω), (3)

where the physicist convention for the temporal Fourier trans-
form is used. A temporal Fourier transform of equation 2
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Second-Order correction procedures

gives,
(

2
∆t sin( ω∆t

2 )
)2

c2
0

σ(z,ω|zs)+∂ 2
z σ(z,ω|zs) = −δ (z− zs)S(ω) (4)

or alternatively,

ω2

c2(ω)
σ(z,ω|zs)+∂ 2

z σ(z,ω|zs) = −δ (z− zs)S(ω), (5)

with c(ω) = c0
ω

( 2
∆t sin( ω∆t

2 ))
.

Theanalytical solution to equation 3 is,

σ(z,ω|zs) = 1
2 c0R(ω)e

i ω
c0

(z−zs), (6)

for the case wherez > zs. In the time domain we have that
S(t) = ∂tR(t). Since the time integration causes dispersion er-
rors we need the solution to equation 5 in order to predict these
errors. The solution is,

σ(z,ω|zs) = 1
2c(ω)R(ω)ei ω

c(ω)
(z−zs). (7)

We observe that there will be both amplitude errors and arrival-
time errors present since the frequency dependent velocity mul-
tiplies the amplitude and appears in the argument.

Ideally I seek the solution to equation 1 but using a second-
order approximation to the time derivative I end up with solu-
tions to equation 2. If I use an alternative transform of equation
2,

Ψ(ω ′) =

∫ ∞

−∞
dtΨ(t)eiω ′t (8)

where,

ω ′ =
2
∆t

arcsin(
ω∆t

2
) and ω =

2
∆t

sin(
ω ′∆t

2
), (9)

then I end up with an equation identical to equation 4, but
whereω is replaced byω ′. However, by application of equa-
tion 9,

ω2

c2
0

σ(z,ω ′|zs)+∂ 2
z σ(z,ω ′|zs) = −δ (z− zs)S(ω ′). (10)

The field in the first term of equation 10 is now proportional to
the desired squared wavenumber, but a remaining problem is
thatω ′ is the frequency argument for the field and source term.

Some attention must be paid to the bandwidth by the intro-
duction ofω ′. With a given time step interval the maximum
angular frequency is given asωNyq = π/∆t. However, due to
the relation in equation 9 we require that the argument of the
arcsin function is less than or equal to unity. Thus, the angular
frequency limits are− 2

∆t ≤ ω ≤ 2
∆t and− π

∆t ≤ ω ′ ≤ π
∆t . The

integration limits forω andω ′ are then given byωc = 2
∆t , and

ω ′
c = π

∆t .

It i s shown in Mittet (2017) how an equation for the true so-
lution, like equation 3, can be combined with an equation for
the actual solution, like equation 10, to form a representation
theorem. This representation theorem can be used to derive,

σ(z,ω|zs) =
σ(z,ω ′|zs)S(ω)

S(ω ′)
, (11)

which is the expression given in Anderson et al. (2015) and
also used in Mittet (2017) for temporal dispersion corrections.

The dispersion correction procedure is then to apply the trans-
form in equation 8 with the frequency as given by equation 9
to the simulated field and to the source waveform. In addition,
the standard Fourier transform must be applied to the source
waveform. Equation 11 can then be applied, followed by the
standard inverse Fourier transform,

σ(z,t|zs) =
1

2π

∫ ωc

−ωc

dω σ(z,ω|zs)e
−iωt . (12)

Figure 1: Pre-propagation filter. To be applied to sources for
simulations with arbitrary temporal step length. Here a 1 ms
step length is used for illustration. The dimensionless param-
eter θ ′ runs from 0.0 to 12000.0 along the abscissa.The di-
mensionless parameterθ runs from 0.0 to 12000.0 along the
ordinate

Wang and Xu (2015) and also Koene and Robertsson (2017)
proposed to perform the dispersion correction by the following
procedure on the numerically simulated field,σ̂(z,t|zs),

σ(z,t|zs) =
1

(2π)

∫ ωc

−ωc

dωe−iωt

∫ TMax

0
dt ′σ̂(z,t|zs)e

iω ′t ′ . (13)

This dispersion correction procedure is identical to the one de-
scribed above if the source function ratio in equation 11 is set
to unity, thus using,

σ(z,ω|zs) = σ(z,ω ′|zs). (14)

The problem with equation 13 is that this is only a partial dis-
persion correction procedure. The situation is that a frequency
dependent amplitude and phase error still remains in the nu-
merically simulated fields after the application of this disper-
sion correction procedure. For some situation this remaining
error is unacceptably large.

Note that if the ratio of the source waveforms in equation 11
is unity, then the transform proposed by Wang and Xu (2015)
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Second-Order correction procedures

and Koene and Robertsson (2017) is applicable. To achieve
a source waveform ratio equal to unity for all frequencies I
postulate a source time function for the numerical simulation,
S̃(t), related to the desired source function,S(t), by,

S̃(ω ′) = S(ω), (15)

such that,

S̃(t) =
1

2π

∫ ω ′
c

−ω ′
c

dω ′e−iω ′t S̃(ω ′) =
1

2π

∫ ω ′
c

−ω ′
c

dω ′e−iω ′tS(ω)

=
1

2π

∫ ω ′
c

−ω ′
c

dω ′e−iω ′t

∫ TMax

0
dt ′S(t ′)eiωt ′ . (16)

The source waveforms are transformed according to equation
16 prior to initiating the numerical simulation. The correction
procedure described by equation 13 is then performed after
the numerical simulation has ended. This result is here a direct
consequence of the relation in equation 11 due to Anderson et
al. (2015) but it can also be derived by an alternative approach
as showed Koene et al. (2017).

A bivariate source filter can be calculated based on equation
16,

FS(t,t
′) =

1
2π

∫ ω ′
c

−ω ′
c

dω ′e−i(ω ′t−ωt ′), (17)

and this filter is applied to all source time functions,S(t|zs), as
a pre-propagation correction in the following manner,

S̃(t|zs) =

∫ TMax

0
dt ′FS(t,t

′)S(t ′|zs). (18)

Such a bivariate filter is shown in Figure 1.

A bivariate wavefield filter for post-propagation corrections
can be constructed in the same manner. From equation 13 we
obtain,

FW (t,t ′) =
1

2π

∫ ωc

−ωc

dωei(ω ′t ′−ωt). (19)

This filter is applied to the numerically simulated field,σ̂(z,t|zs),
as a post-propagation correction,

σ(z,t|zs) =

∫ TMax

0
dt ′FW (t,t ′)σ̂(z,t ′|zs). (20)

The post-propagation filter is shown in Figure 2.

For practical calculations we can express the two filters as,

FS(t,t
′) =

1
π

∫ ω ′
c

0
dω ′ cos

(

ωc sin(
ω ′

ωc
)t ′−ω ′t

)

,

FW (t,t ′) =
1
π

∫ ωc

0
dω cos

(

ωc arcsin(
ω
ωc

)t ′−ωt
)

.

(21)

BothFS(t,t ′) andFW (t,t ′) are independent of the source time
function and the numerically simulated field. In the form given
in equation 21 it appears as if the filters depend on the time

Figure 2: Post-propagation filter. To be applied to recorded
fields for simulations with arbitrary temporal step length. Here
a 1 ms step length is used for illustration

step,∆t. It will be a major drawback if a new filter must be
designed as soon as the the time step change. However, with
a proper sampling it turns out that only oneFS(t,t ′) filter is
required, valid for any∆t. Likewise, only oneFW (t,t ′) filter
is required, also valid for any∆t. To see this, we first change
the integration variables,ω ′ = ηωc in the upper equation 21
andω = ηωc in the lower equation 21. Also useθ ′ = ωct ′ and
θ = ωct for the upper equation 21 andθ ′ = ωct ′ andθ = ωct
for the lower equation 21. Equation 21 is then,

FS(θ ,θ ′) =
ωc

π

∫ π
2

0
dη cos

(

sin(η)θ ′−ηθ
)

,

FW (θ ,θ ′) =
ωc

π

∫ 1

0
dη cos

(

arcsin(η)θ ′−ηθ
)

,

(22)

where we can writeFS(t(θ ),t ′(θ ′)) = FS(θ ,θ ′) for the pre-
propagation filter andFW (t(θ ),t ′(θ ′)) = FW (θ ,θ ′) for the
post-propagation filter. First we replace,ωc = 2/∆t, with 2.
This since the discrete versions of the integrals in equations 18
and 20 have multiplication with∆t. If we replaceωc = 2/∆t,
with 2, then multiplication with∆t when applying the filters is
no longer required. Note thatθ ′ = 2t ′

∆t andθ = 2t
∆t . Let both

t ′ andt be sampled every∆t, such thatt ′ = n′∆t andt = n∆t,
wheren′ andn take on the integer values 0,1,2,3,4, .... The
maximum times are given byn′ = n = NT . We then haveθn′ =
2n′ andθn = 2n such thatθn′ andθn will take on the real values
0.0,2.0,4.0,6.0, ... when calculating the filters.

The integral overη is performed with a step length,

∆η =
∆ω
ωc

=

2π
Nt ∆t

2
∆t

=
π

NT
, (23)

and withNη = 1/∆η andN′
η = π

2/∆η. Usingηm = m∆η the
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Second-Order correction procedures

filters are generated by,

FS(θn,θn′) =
2∆η

π

N ′
η

∑

m=0

cos(sin(ηm)θn′ −ηmθn) ,

FW (θn,θn′) =
2∆η

π

Nη
∑

m=0

cos(arcsin(ηm)θn′ −ηmθn) . (24)

Observe that∆t does not need to be specified with the given
sampling ofθ andθ ′. The filters are in principle valid for any
simulation time step. The filters are applied as,

S̃(n∆t|zs) =

NT
∑

n′=0

FS(θn,θn′)S(n′∆t,zs),

σ(z,n∆t|zs) =

NT
∑

n′=0

FW (θn,θn′)σ̂(z,n′∆t|zs). (25)

We have thattn = 1
2 θn∆t = n∆t andtn′ = 1

2 θn′∆t = n′∆t so equa-
tion 25 is,

S̃(tn|zs) =

NT
∑

n′=0

FS(tn,tn′)S(tn′ ,zs),

σ(z,tn|zs) =

NT
∑

n′=0

FW (tn,tn′)σ̂ (z,tn′ |zs), (26)

as desired. The dispersion correction procedure is then to ap-
ply FS to all source functions prior to the modeling. After the
modeling has completed the modeled data is filtered withFW .

One limitation of the filters is that they can only be applied
to time functions of lengthTMax ≤ NT ∆t. Hence, it is advan-
tageous to design filters with a largeNT . This may actually
require some computer time. However, each filter needs only
be calculated once. For the future they can be used for almost
any simulation independent of the time step. If for example
NT = 10000 then the filters can be used for traces of up to
10 s with a 1 ms simulation time step and traces of up to 20
s if the simulation time step is 2 ms. For example, a filter
with NT = 30000 will be 3.6 GB in size without compression
(4×NT ×NT ). If this filter is designed, then smaller and more
handy filters can be extracted as subsets of that main filter. An
extractedNT = 10000 filter will be 400 MB without compres-
sion.

The application of the filters are directly in the time domain
so no complex numerical operations are required. This is in
contrast to the frequency domain filters where both the pre- and
the post-propagation filters require combinations of FFT’s and
DFT’s. The application of the time domain filters are easily
vectorized on most computers.

RESULTS

An example of applying the pre-propagation and post-propagation
filters are shown in Figure 3. The modeling is performed in

a whole-space with velocity 1500 m/s and the total propaga-
tion distance,Zrs, is 6000 m. The maximum frequency of the
field is 100 Hz with a peak frequency at 40 Hz. The phase
and amplitude errors are displayed as a function of frequency.
Equation 7 is divided by equation 6. The relative error in am-

plitude isεA =
c(ω)

c0
−1 and the equivalent traveltime error is

∆τ = Zrs(1/c(ω)−1/c0) as explained in Mittet (2017). It is
obvious that errors are large over 6000 m propagation distance.
Traveltime errors are frequency dependent and exceed 1 ms al-
ready for the 10 Hz component of the field. Excellent results
are achieved with the application of the pre-propagation and
post-propagation filters.

Figure 3: a) Field amplitudes, the black curve is the analytical
solution, the red curve is the uncorrected finite-difference so-
lution. The green curve is the corrected finite-difference solu-
tion. b) Phase error given as a traveltime error. The black curve
is the dispersion error predicted by theory. The red curve is the
dispersion error measured on the uncorrected simulated field.
The green curve is the dispersion error measured on the cor-
rected simulated field. c) Relative amplitude error. The black
curve is the amplitude error predicted by theory. The red curve
is the amplitude error measured on the uncorrected simulated
field. The green curve is the amplitude error measured on the
corrected simulated field.

CONCLUSIONS

Both the phase and amplitude errors introduced by the second
order accurate time integration can be removed by proper cor-
rection procedures. It is not sufficient to perform only a post-
propagation correction on the numerically simulated field. Pre-
propagation correction on the source time functions must be
applied in order to achieve acceptable results.

The time-domain bivariate pre-propagation filter and the time-
domain bivariate post-propagation filter are valid for any rea-
sonable simulation time step. They can be calculated once and
then used for any modeling scheme that uses second order time
stepping.
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