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SUMMARY

Initial model estimation can be fully data driven. Normally
only one inversion run is required to achieve a good estimate
for a smooth initial model with this approach. The scheme
saves the operator in charge of the processing from repeated
tests to find a proper initial model. It is very common in a pro-
duction setting that several initial models are tested by the op-
erator for each survey dataset. Thus there is a search not only
for the final model but also for the initial model. These initial-
model tests have a fairly high cost since they are full-scale in-
versions. A data driven start model generation approach has
the potential to improve marine CSEM imaging, especially in
the deeper sections. A real data test from Brazil confirms the
potential, the approach is giving a more focused inversion that
has a better match with a priori information regarding reservoir
placement, both laterally and in depth.

INTRODUCTION

Marine controlled-source electromagnetic data (MCSEM) data
are as a rule “imaged” by full waveform inversion (FWI). The
end result of the inversion is a resistivity cube. Seismic imag-
ing techniques like depth migration and reverse time migration
are not effective since MCSEM data are dominated by refrac-
tions and wave-guide contributions (Mittet, 2015). Sometimes
FWI is portrayed as a fully automatic procedure. It is not so in
a production setting. The large scale 3D nature of this inverse
problem precludes global optimization schemes and some sort
of local optimization scheme is forced. The local optimization
schemes can roughly be divided into gradient based schemes
and Gauss-Newton (GN) schemes where also a Hessian ap-
proximation is used predict the update. Both types of scheme
are usually designed to accept only updates that reduce the er-
ror functional. In this way local schemes become dependent
on the initial model. For MCSEM our experience is that GN
schemes are more robust than gradient based schemes with re-
spect to the choice of initial model, but GN schemes are far
from independent of the initial model. A consequence is that
it is very common in a production setting that several initial
models are tested by the operator for each survey dataset. Thus
there is a search not only for the final model but also for the
initial model. Unless proper tools are available it may be that
the search for the initial model requires more human and com-
puter resources than the search for the final model.

These initial-model tests have a fairly high cost since they are
full scale inversions. They tend to use cluster resources on a
large scale. Our general experience is that a half space as ini-
tial model is too far from the true model to give optimal final
models. On the other hand, it may be dangerous to put too
much structure into the start model. If that structure informa-
tion is false, then the inverse scheme may struggle to remove

it to a sufficient degree. A smooth start model is advantageous
for MCSEM inversion as is often the case also for seismic in-
version. For production work we see that a start model with
a gradient in resistivity from the seabed and down performs
much better than a half-space model, but it may be possible to
perform even better if the search for the initial model is more
directly data driven.

The scheme discussed below is a data-driven parametric in-
version for a smooth initial model. The parametrized function
space ensures the smoothness. The scheme uses a subset of
all available receivers in a survey. Typical inline and crossline
receiver separations are 5 km, however all towlines are used.

THEORY

Our objective is to construct a smooth resistivity model with a
limited number of optimization parameters. The seawater part
of the model, including bathymetry variations is kept fixed dur-
ing all iterations. The parametrized model will have 3D vari-
ations. The lateral variations will be described by bivariate
polynomials up to second order in the two horizontal coordi-
nates x and y. These polynomials will be multiplied by func-
tions that either cover the total model volume or by spatially
bandlimited depth dependent functions. The key function used
to describe the smooth depth dependence is the Fermi distribu-
tion, F . The Fermi distribution can be expressed as,

F (z,z(1)
µ ,z(1)

w ) =

1+ e

(z−z(1)
µ

)

β z(1)
w

−1

, (1)

where z is the depth coordinate. The parameter z(1)
µ is usu-

ally called the Fermi energy or the chemical potential, here it
will be called the transition depth. The general behavior of
the Fermi distribution is that F = 1 for z < z(1)

µ and F = 0

for z > z(1)
µ . A value of β = 0.144 lets z(1)

w roughly repre-
sent the width of the transition zone. The Fermi distribution
is used at the top of the formation and immediately below the
seabed. Layers in the middle of the formation are represented
by the bandlimited boxcar distribution. This function can be
expressed as the sum of two Fermi distributions,

B(z,z(i)
µ ,z(i)

w ,z(i+1)
µ ,z(i+1)

w ) = F (z,z(i+1)
µ ,z(i+1)

w )−F (z,z(i)
µ ,z(i)

w ), (2)

where z(i)
µ and z(i)

w are the transition depth and transition width

at the top of the layer and z(i+1)
µ and z(i+1)

w are the transition
depth and transition width at the bottom of the layer. A ban-
dlimited Heaviside step function is used to terminate the layer
structure. The bottom layer is denoted NL, but the Heaviside
step function is forced to have the same transition depth and
width as the bottom part of the boxcar distribution in the layer
above,

H (z,z(NL−1)
µ ,z(NL−1)

w ) = 1−F (z,z(NL−1)
µ ,z(NL−1)

w ). (3)

10.1190/segam2018-2992161.1
Page    893

© 2018 SEG
SEG International Exposition and 88th annual Meeting

D
ow

nl
oa

de
d 

11
/0

1/
18

 to
 6

2.
92

.1
24

.1
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Data driven initial model

Examples of the layer functions are shown in Figure 1.

We can let the transition depths, z(k)
µ , be independent of lateral

position if the seabed is flat, however, MCSEM surveys are
often conducted in areas with large bathymetry variations. In
that case it is not unreasonable to assume that there is a trend
in the earth layering that follows the bathymetry variations, at
least for the shallower part of the subsurface. Our choice is

Figure 1: Depth profile of layer function when all amplitude
factors equals unity. a) Boxcar function for the third layer.
b) Fermi function (green) for the top layer. Heaviside func-
tion (cyan) for the bottom layer. The intermediate layers are
parametrized with Boxcar function. The layer function is ev-
erywhere unity when the amplitudes are unity.

to let the transition depth depend on the lateral position. We
define the smoothed bathymetry profile as zB(x,y). This profile
is obtained by lowpass filtering the true bathymetry profile.
Transition depths can then be defined as,

z(k)
µ → z(k)

µ (x,y) = zB(x,y)+ z(k)
∆

, (4)

where the z(k)
∆

is independent of lateral position. The layering
of the model is then forced to follow the smoothed bathymetry
profile. This may be reasonable for the large scale structure of
the shallow subsurface but may be less justified with increasing
depth. However, we let each layer function be proportional to
a bivariate polynomial, a bilinear example is,

A (k)(x,y) = a(k)
1 +a(k)

2 (x− xC)+a(k)
3 (y− yC)

+ a(k)
4 (x− xC)(y− yC) (5)

where (xC,yC) is the lateral midpoint of the 3D resistivity model.
The degree of the polynomial is a user choice and can be ze-
roth, first or second order. The polynomial coefficients are the

optimization parameters for the inversion problem. Obviously,
a zeroth order polynomial gives few parameters to estimate.
The layer thicknesses and transition widths increase logarith-
mically with depth but are only adjustable prior to the start up
of the inversion.

We next expand the layer function L with two more elements,
such that,

L (1)(x,y,z,z(1)
µ (x,y),z(1)

w ) = F (z,z(1)
µ (x,y),z(1)

w ),

L (2)(x,y,z,z(2)
µ (x,y),z(2)

w ) = B(z,z(1)
µ (x,y),z(1)

w ,z(2)
µ (x,y),z(2)

w ),

L (3)(x,y,z,z(3)
µ (x,y),z(3)

w ) = B(z,z(2)
µ (x,y),z(2)

w ,z(3)
µ (x,y),z(3)

w ),

...................... = .....................,

L (NL)(x,y,z,z(NL)
µ (x,y),z(NL)

w ) = H (z,z(NL−1)
µ (x,y),z(NL−1)

w ),

(6)

and

L (NL+1)(x,y,z,z(NL+1)
µ (x,y),z(NL+1)

w ) = 1.0,

L (NL+2)(x,y,z,z(NL+2)
µ (x,y),z(NL+2)

w ) = z− zB(x,y).

(7)

The two last terms allow a for a gradient behavior of the re-
sistivity model independent of the layer structure. The vertical
resistivity model can now be expressed,

ρv(x,y,z,Zµ ,Zw) =
NL+2∑
k=1

A (k)(x,y)L (k)(x,y,z,z(k)
µ (x,y),z(k)

w ). (8)

The parametrization of the horizontal resistivity model has the
same form as the parametrization of the vertical resistivity model
but the parameters may differ. The optimization scheme has
good sensitivity to the parametrization. Formally we can now
collect all the amplitude factors a(k)

i for the vertical and ã(k)
i for

the horizontal resistivity model in a parameter vector p. The
3D resistivity models are a function of this parameter vector
only.

Let xr be the receiver position, xs the source position, ω the
angular frequency and i a horizontal component for the field
Fi(xr,xs,ω), where Fi can be electric field Ei or magnetic field
Hi. We denote the observed fields FObs

i (xr,xs,ω). The pre-
dicted field depends on the parameter vector p so for the pre-
dicted fields at iteration n we write FPrd

i (xr,xs,ω|p). The un-
certainty in the observed data is δFi(xr,xs,ω). The sum over
[xr,xs,ω, i,F ] is then the sum over all observations. A smooth
model that fits the observed data can be estimated by minimiz-
ing the error functional ε(p),

ε(p) =
∑

xr ,xs,ω,i,F

η
2(xr,xs,ω, i,F),

η(xr,xs,ω, i,F) =

√
∆F∗i (xr,xs,ω|p)∆Fi(xr,xs,ω|p)

δFi(xr,xs,ω)
,

∆Fi(xr,xs,ω|p) = FObs
i (xr,xs,ω)−FPrd

i (xr,xs,ω|p).

(9)

The above optimization problem is solved with the Levenberg-
Marquardt algorithm. The Jacobian elements are estimated by
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Data driven initial model
Gradient - Ini�al model Data driven - Ini�al model

Data driven - Final modelGradient - Final model

Figure 2: Initial and final models. Left is for gradient start model and right is for data driven start model estimation. Initial model
at the top, final models at the bottom.

a finite-difference technique. For the examples to follow, NL =
5 and bilinear polynomials were used such that 56 parameters
must be estimated for a vertical plus a horizontal resistivity
model.

RESULTS

In order to test the procedure, we forward modeled synthetic
data in a layered model containing three different targets at
various burial depths and with different thicknesses and resis-
tivities. Two of the targets were stacked on top of each other,
with 800 meter separation. Prior to inversion, realistic syn-
thetic noise were added to the data.

The data set was first inverted with our 3D Gauss-Newton
scheme, using a gradient start model close to the true model
and next using a smooth start model estimated from the data
itself. Both inversions were set up with the same parameters,
and converged to a misfit level equal to the uncertainty level in
the data given by the added noise. Both inversions recreated
the background resistivity very well. However, the inversion
using the estimated start model was able to separate and image
the stacked targets, whereas the inversion using the gradient
model struggled in this part of the model and introduced arti-
facts. Depth placement of the targets is also closer to the true
model using the start model based on parametric inversion. Ini-
tial and final models are given in Figure 2.

The approach has been tested on a real multi-client data set ac-
quired in 2012 offshore Brazil in the Sergipe-Alagoas Basin, as
indicated in Figure 3. The survey consists of 232 receivers in a
staggered 2x2 km grid and 15 towlines with 2 km spacing, cov-
ering an area of 800 km2. This area includes the major Muriu
and Moita Bonita discoveries - there is thus ample well con-
trol in the area, making it well suited for testing the approach
in an actual exploration setting. Both Muriu and Moita Bonita
are turbidite sandstone discoveries, situated in the Early Creta-
ceous section approximately 2500-3000 m below the mudline.

The cross-sections in Figure 4, marked with the red line in Fig-
ure 3, covers two wells (3-BRSA-1244-SES to the north and
3-BRSA-1296-SES to the south) which encountered light oil
and reservoirs with good permeability and porosity conditions.

Two initial models were tested in this exercise. One where we
used a gradient model derived from 2.5D Gauss-Newton inver-
sions. Several towlines were used and the results were inter-
polated. Only inline data contributed with this procedure. The
second initial model was the result of the parametrized inver-
sion scheme described in the previous section. The input to the
data driven start model estimation was a decimated version of
the complete data set, using 32 receivers spaced 6 km apart, but
including all 15 towlines, such that azimuth data contributed to
the optimization. Two Gauss-Newton inversion runs were then
performed, including all the receivers and all the towlines. In-
version and regularization parameters were identical - the only
difference between the two runs was the start model.

As can be seen in Figure 4, the two start models are not rad-
ically different, though the data driven model includes a shal-
low, low resistive layer not captured by the gradient model as
well as being more resistive in the deeper parts around and
below the discovery interval. The deepest horizon shown in
these figures is mapped from legacy 2D seismic data acquired
by Veritas and represents a feature near the Base Campanian,
while the upper horizon is the same surface shifted up 800 m
in order to represent the prospective interval. It is important
to note that these horizons have not been used in the inversion
process, and only serve as a visual guide when interpreting the
results. The initial RMS data misfit from the gradient model
was 6.04 compared to 4.63 for the data driven model.

Both inversion runs converged towards the same RMS data
misfit of 1.0, and using a similar amount of iterations. In the
shallow section above the prospective level, both inversions
seem to recover similar resistive features. However, when in-
specting the prospective level in light of what we know from
the seismic data and the wells in the area, we observe that the
final model from the data driven approach is more focused
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Data driven initial model

Figure 3: Survey overview to the left and survey layout to the right.

Figure 4: Initial and final models. Left is for gradient start model and right is for data driven start model estimation. Initial model
at the top. Final models at the bottom.

and has been able to place the resistive anomalies more ap-
propriately in depth. We also see that the lateral distribution
differs slightly, especially at the northern 3-BRSA-1244-SES
well, where the final model starting from the data driven ini-
tial model estimate has a more distinct anomaly than the final
model starting from the gradient model.

We also observe discrepancies in the south eastern part of the
cross-section, where the gradient approach has recovered a
weak, shallow resistor ( 2000 m BML) above a deeper con-
ductive section, while the data driven approach has recovered
a considerably stronger resistive anomaly and placed it deeper,
within the conductive section. However, due to the lack of data
points at the edge of the survey, this discrepancy is well within
the expected uncertainty at the edge of the survey and would
need further testing before doing interpretation at that location.

CONCLUSIONS

We see that a data driven start model generation approach has
the potential to improve MCSEM imaging, especially in the

deeper sections. A real data test from Brazil confirms the po-
tential, the approach, giving a more focused inversion that has
a better match with a priori information regarding reservoir
placement, both laterally and in depth.
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