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Summary 
Accurate estimation of CSEM measurement uncertainty is required for quantitative analysis in inversion, survey 
optimization, and feasibility studies. We describe a practical uncertainty model that robustly handles measured 
data even in a geology that gives rise to dramatic amplitude features. We explain how such features arise from 
interference effects, which clarifies CSEM shallow water wave propagation phenomenology. 
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Introduction 
 
The marine controlled-source electromagnetics (CSEM) technology has diversified to include e.g. 
equipment sets with shallow-towed sources and towed receivers, and application in frontier and 
unusual geologies. Thus, we encounter remarkable data features not considered in standard literature, 
and which challenge common methods for data analysis. Robust quantification of measurement 
uncertainty is essential for feasibility studies and survey planning, where underestimation may lead to 
wrong conclusions regarding target sensitivity. Underestimation of the uncertainty can be a critical 
problem for inversion, leading to imaging artefacts or lack of convergence. The inversion objective 
function quantifies the data difference ratio to measurement error ‖ο𝐸௜/𝛿𝐸௜‖௣, and an unrealistically 
small 𝛿𝐸௜  will bias the model update to exaggerate outliers with high sensitivity to noise. 
 
In this paper we present a practical model for CSEM measurement uncertainty estimation that 
robustly handles sudden amplitude variations. Our model can be motivated by the real-data example 
in Figure 1, which shows inline electric field amplitude data, |𝐸௫|. The data was acquired in the 
Barents Sea using a shallow-towed, high-power source system (Barker et al., 2012). The formation 
resistivity is high, which makes it feasible to use high frequencies. The amplitude data exhibit a cusp 
at an offset that decreases with increasing frequency. The depression in amplitude is deeper for the 
higher frequencies. We will show later that this is caused by a destructive interference effect due to 
two different wave propagations. But first we focus on the prediction of the measurement uncertainty, 
𝛿𝐸௫. A simple estimate is achieved by a relative uncertainty proportional to the amplitude combined 
with an ambient noise contribution. The uncertainty prediction from such an estimate is shown as a 
thin line in Figure 1. At the cusp, this estimate significantly underestimates uncertainty. Small 
perturbations in source-receiver offset can give a large change in the data. The contribution to the 
inversion objective function at the cusp will be severely overestimated, and may dominate. We will 
describe an extension to the uncertainty model that explicitly incorporates a contribution from source-
receiver offset uncertainty and overcomes this problem. The uncertainty estimate from this model is 
shown as the dashed line in Figure 1, and at 11.5 Hz we see that the uncertainty estimate at the cusp is 
increased by an order of magnitude, suppressing error-prone responses within a km-wide interval. 
 
Uncertainty model 
 
We will apply the error propagation framework described by Mittet and Morten (2012) to quantify the 
data uncertainty, 𝛿𝐹௜. The quantity 𝐹௜ can represent either an electric (𝐹 = 𝐸) or magnetic (𝐹 = 𝐻) 

 
Figure 1 Real-data example from the Barents Sea, Norway. Thick solid lines show inline electric field 
amplitude |𝐸௫|: Blue – 3.5 Hz, black – 11.5 Hz. The dashed and thin lines show uncertainty estimates 
𝛿𝐸௫ with and without contribution from a term determined by data derivative with offset. 
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field component in direction 𝑖 = 𝑥, 𝑦. As an approximation to the detailed model, Mittet and Morten 
(2012) investigated a simplified model incorporating a term that describes relative uncertainty with 
ratio 𝛾, and an ambient noise term δ𝑁, 

𝛿𝐹௜(𝐫) = ඥ𝛾ଶ|𝐹௜(𝐫)|ଶ + 𝛿𝑁ଶ . (1) 
We choose the origin at the receiver position and let 𝐫 denote the source position. When extended 
with a term that describes receiver orientation uncertainty, 𝛿𝜃, relevant for azimuth data (Morten et 
al., 2009), this is a practical uncertainty model that has provided a useful weight scheme for 3D 
CSEM inversion applied to data from surveys in different geologies. However, the model in Eq. (1) is 
not applicable for datasets where the amplitude |𝐹௜| variation drastically deviates from exponential 
like the example in Figure 1. The approximation fails to represent a term related to uncertainty in the 
source-receiver offset, 𝛿𝑟, that is determined by the derivative of the data sample with respect to 
source-receiver offset 𝜕𝐹௜/𝜕𝑟. The amended uncertainty model which includes the 𝜕𝐹௜/𝜕𝑟 
contribution from Mittet and Morten (2012) becomes 

𝛿𝐹௜(𝐫) = ඨ𝛾ଶ|𝐹௜(𝐫)|ଶ + 𝛿𝑁ଶ + ቤ
𝜕𝐹௜(𝐫)

𝜕𝜃
𝛿𝜃ቤ

ଶ

+ ቤ
𝜕𝐹௜(𝐫)

𝜕𝑟
𝛿𝑟ቤ

ଶ

 . (2) 

The real parameter 𝛿𝑟 is determined by operational performance characteristics. For example, 
accurately positioning seafloor equipment is harder in deep water than in shallow water. The models 
in Eqs. (1) and (2) are shown as the thin and dashed lines respectively in Figure 1. Note that the term 
scaling with 𝜕𝐹௜/𝜕𝜃 introduces a contribution proportional to the orthogonal field component (e.g. 
ห𝐸௬ห for 𝛿𝐸௫), and for azimuth data this avoids the severe underestimation of uncertainty at the cusp 
feature. For inline data it is however essential to include the 𝛿𝑟-contribution. The relative uncertainty 
𝛾 in Eq. (2) represents the contributions due to e.g. sensor calibration and source output uncertainty, 
and can be predicted based on quantitative information about equipment performance. 
 
To determine the uncertainty model contribution |𝜕𝐹௜/𝜕𝑟|𝛿𝑟 we need to compute the derivative of the 
field component 𝐹௜. For synthetic data this can be carried out very accurately by modeling the 
corresponding measurement at closely spaced source locations, and then constructing the finite- 

 
Figure 2 Electric field in a plane-layer model at 17.8 Hz with the source at x=0 m, z=200 m. The 
color scale shows the horizontal electric field amplitude as log |𝐸௫|. The vector overlay (white lines 
with a circle at the vector origin) shows a snapshot of the harmonic time-variation E(x,y=0,z;t) at 
t=nT with period T=1/f. Black line at depth 250 m shows the location of the seafloor. The two black 
lines at depth 1250 m and 1310 m show the location of the resistive layer. Note the depression in |𝐸௫| 
at the seafloor about 3.5 km offset from the source, co-located with an electric field direction reversal. 
This corresponds to the cusp shown in the amplitude versus offset plot in Figure 3. 
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difference derivative. For real data, such a procedure is constrained since the measurement locations 
are fixed by the survey layout. Moreover, the computation of a finite-difference derivative from real 
data will be affected by noise, which leads to the requirement that the variation between the data samples 
exceeds measurement uncertainty. We have found that the derivative can be estimated by considering 
consecutive source locations when data with dense spacing along the towline (∼ 100 m) is available. In 
a general geometry with the towline offset from the receiver, the derivative can be approximated 

𝜕𝐹௜(𝐫)

𝜕𝑟
≈

𝐹௜(𝐫 + ο𝐥) − 𝐹௜(𝐫)

ο𝑙 cos(𝛼 − 𝛽)
. (3) 

Here ο𝐥 is the displacement vector of the source for two consecutive source points, 𝛼 is the line-of-
sight angle from the receiver to the source, and 𝛽 is the source heading. This estimate was used to 
compute the dashed uncertainty curve in Figure 1. Note that for broadside data where 𝛼 − 𝛽 = 90∘, 
the source displacement in radial direction ο𝑟 ≈ 0 so the approximation breaks down, but in this case 
the uncertainty is dominated by other contributions and we can neglect  |𝜕𝐹௜/𝜕𝑟|𝛿𝑟. 
 
Interference effects in CSEM 
 
To elaborate the physical phenomenology that gives rise to the measured cusp from Figure 1, we 
consider a plane-layer model synthetic data example. We consider inline electric field data, and set the 
water depth to 250 m. The receiver is on the seabed and the source towline is at 200 m depth. The 
water and uniform background resistivities are 0.31 Ωm and 8 Ωm respectively. These values are 
representative of the geology where the real-data example in Figure 1 was acquired. We also include a 
resistive layer at depth 1250 m that is 60 m thick and has resistivity 108 Ωm. We use the modelling 
approach described by Løseth and Ursin (2007) to compute the frequency-domain amplitude and 
phase of the electric field components, |𝐸௜(𝑓)|𝑒௜థ೔(௙), where 𝑓 is the frequency. This determines the 
electric field from a harmonic source in a cross-section along the horizontal electric dipole source 

𝐄(𝑡) = |𝐸௫(𝑓)| cos൫𝜔𝑡 − 𝜙௫(𝑓)൯ 𝐱ො + |𝐸௭(𝑓)| cos൫𝜔𝑡 − 𝜙௭(𝑓)൯ 𝐳ො, (4) 
where we have suppressed the spatial arguments (𝑥, 𝑦 = 0, 𝑧). The amplitude and direction of this field 
is shown in Figure 2. Note the region to each side of the source with a field direction reversal and an 
amplitude depression. At the seafloor, this feature is at 3.5 km source-receiver offset. Inside the resistive 
layer, the guided wave is dominant in |𝐸௭|. This component is not shown in Figure 2, but the effect of 
the guided wave is clear in |𝐸௫| which is measured on the seafloor. 
 
The |𝐸௫| field on seafloor receivers is shown in Figure 3. A feature similar to the cusp that was pointed 
out in the real data is apparent. To analyse this in detail we apply the decomposition into up- and down-
going components described by Amundsen et al. (2006). We carry out the decomposition in the sea 
where the receivers are located. Note that for frequencies above 10 Hz, two-way propagation in the 
water column corresponds to more than 5 skin-depths. This gives two orders of magnitude reduction of 
field amplitude, making water column multiples a small contribution for high frequencies (Nordskag 
and Amundsen, 2010). The up-going component then represents subsurface response, and the down-
going component is the airwave (Mittet and Morten, 2013). Figure 4 left shows that at the offsets where 

 

Figure 3 Horizontal electric field 
amplitude for seafloor receivers in the 
model shown in Figure 2 (solid lines). 
The colors correspond to different 
frequencies: Red – 5.6 Hz, blue – 10 Hz, 
and black – 17.8 Hz. The dashed lines 
show the background field (no resistive 
target layer) for reference. 
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the cusp is observed (Figure 3), the up- and down-going components have similar amplitude. The 𝐸௫ 
field follows from standard addition of harmonics,  

𝐴 cos(𝜔𝑡 − 𝜙஺) + 𝐵 cos(𝜔𝑡 − 𝜙஻)
஺≈஻
ሱ⎯ሮ 2𝐴 cos ൬

𝜙஺ − 𝜙஻

2
൰ cos ൬𝜔𝑡 −

𝜙஺ + 𝜙஻

2
൰ . (5)  

In this expression, 𝜙஺ − 𝜙஻ corresponds to the phase difference shown in Figure 4 right. We see that 
at offset corresponding to the cusp in 10 Hz and 17.8 Hz data, the two contributions are out of phase, 
i.e. differ by a half-integer times 360∘ (540∘ in the plot). This leads to a classical destructive 

interference of the wave components according to Eq. (5) from the factor cos ቀ
థಲିథಳ

ଶ
ቁ, which 

explains the cusp feature. A similar conclusion can be made without reference to up-down separation 
by explicitly modelling the primary contributions to the receiver signal. This further identifies the 

cusp in the 5.6 Hz |𝐸௫
(୳୮)

| data (Figure 4 left) as related to water column multiples. 
 
Conclusions 
 
We consider an uncertainty model for CSEM data that incorporates experimental errors scaling with a 
spatial derivative of the field. The contribution is important when destructive interference effects can 
cause simpler models to significantly underestimate measurement uncertainty. We demonstrate a 
practical implementation using real data. Finally, we explain the considered shallow-water wave 
propagation phenomenology using a synthetic data example. Our examples show that such interference 
effects occur in resistive environments for both shallow-towed and deep-towed source configurations. 
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Figure 4 Up-down separated electric field components for the target model data shown in Figure 3. 

Left: Amplitude with solid line up-going (|𝐸௫
(୳୮)

|) and dashed line down-going (|𝐸௫
(ୢ୬)|). Right: Phase 

difference between up-going and down-going components, 𝜙௫
(୳୮)

− 𝜙௫
(ୢ୬).  


