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Summary

A much used transmitter waveform for marine CSEM
surveys is the square wave. The square wave has the
advantage that maximum energy is transferred to the
subsurface, since the transmitter current is running at
it’s peak amplitude at all times. The problem with the
square wave is that it has a less than ideal frequency
spectrum. The frequency domain current amplitudes
are proportional to the inverse of frequency, so the
amplitudes are reduced with increased frequency. At
the same time the absorption of the electromagnetic
field increases with frequency. We propose a waveform
where the transmitter operate at its peak current at all
times, but where the number of switching times within
a period may be larger than two, which is the number
of switching times per period for a square wave. The
method is based on matching desired frequency spectra
with spectra obtained from generalized square waves.
This is an optimization problem that is solved with a
Monte Carlo method. The end results are waveforms
that can be used for an electric dipole transmitter and
where the frequency spectra are close to predefined
desired spectra.

Introduction

Marine controlled-source electromagnetics (CSEM) as
suggested by Cox et al. (1971) and Young and Cox (1981)
have later been followed up by contributions from Consta-
ble (1990), Constable and Cox (1996), Yuan and Edwards
(2000) and MacGregor et al. (2001). These were non-
hydrocarbon related studies except for Yuan and Edwards
who investigated marine gas hydrates. The application of
the method to hydrocarbon exploration, also named Sea
Bed Logging (SBL), is described by Eidesmo et al. (2002)
and Ellingsrud et al. (2002). The use of the method for
hydrocarbon exploration in ExxonMobil is discussed by
Srnka et al. (2006).

A much used transmitter waveform is the square wave.
The square wave has the advantage that maximum energy
is transferred to the subsurface, since the source current
is running at its peak value at all times except for possible
switching intervals. The problem with the square wave is
that the current amplitudes are proportional to the in-
verse of frequency, so the current amplitudes are reduced
with increased frequency. At the same time the absorp-
tion of the electromagnetic field increases with frequency.
It may be desirable to partially counter act the increased
loss with frequency by distributing more power to higher
frequencies than is possible with the square wave.

We propose a generalized square wave that combines max-

imum power with a desired frequency spectrum. The ad-
vantage is that more than a few frequencies with appre-
ciable amplitude can be acquired in a single tow line. The
maximum power is obtained by having an active source at
maximum negative or positive current at all times. The
method is developed with the assumption that there may
be a short period of zero current in the transmitter when
switching from a negative to a positive current direction
or vice versa. This is typical for a thyristor based trans-
mitter where the wait time is approximately 80 - 100 ms.
This switching interval will be much smaller for a tran-
sistor based transmitter, possibly less than 5 ms.

Several advanced processing schemes, like depth migra-
tion and inversion, give improved results as the number
of frequencies that can penetrate to large depths increase.
With a standard square wave this can be achieved by tow-
ing the same line several times with different base frequen-
cies. It is clear that there is a potential cost reduction if a
richer frequency spectrum can be obtained from a single
towline.

Theory

We consider a periodic waveform for the transmitter cur-
rent, where the current is allowed to switch direction M
times during a period. For the standard square wave, the
transmitter current switch sign two times during a period
so we allow M to be equal to or larger than two. We
can consider M to be even since we work with a periodic
signal. The transmitter current, J(t), is assumed periodic
with a period T0,

J(t) = J(t + T0). (1)

The transmitter current can be represented by the follow-
ing Fourier series,

J(t) =

∞∑
n=0

Jne−iωnt. (2)

The angular frequency ωn is, ωn = nω0, with, ω0 =
2πf0 = 2π/T0. The Fourier representation of the trans-
mitter current is,

Jn =
2

T0

∫ T0

0

dtJ(t)eiωnt. (3)

We split a period into a time-ordered sequence, SM , of
M + 1 times,

SM = {t0, .., tm−1, tm, tm+1, .., tM}, (4)
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such that t0 = 0, tM = T0 and tm−1 ≤ tm. We assume
that the time t0 belongs to the previous period. The
times, tm, in this sequence are then switching times at
which the direction of the current change ±180 degrees
with respect to the transmitter orientation. The current
amplitude is assumed to be at the peak value between
switching times. In the derivation to follow we choose
the current to be at the positive peak value on the first
interval from t0 to t1. The other possible option is to
choose the current to be at the negative peak value on
this interval. The difference is a 180 degrees phase shift
of the current waveform. The resulting spectra from these
two choices will be identical if all the switching times are
identical. Some of the examples we show in the following
are with with a negative peak value on the first interval.
For practical use, one choice is just as good as the other.
Let Jmax be the maximum current for the transmitter,
then the proposed transmitter waveform can be written,

J(t) = (−1)m−1Jmax tm−1 < t ≤ tm. (5)

The above equation must be modified slightly if a thyris-
tor based transmitter is analyzed. The reason is that such
a transmitter cannot switch instantaneously between pos-
itive and negative current directions. It will have a switch-
ing interval, ts, which is approximately 80 - 100 ms. In
this interval the current is zero. We can include this ef-
fect by modifying equation 5. Let tσ be half the switching
interval, thus,

ts = 2tσ, (6)

then the transmitter time function, including the effect of
a finite switching interval, is,

J(t) = 0 tm−1 < t ≤ tm−1 + tσ,

J(t) = (−1)m−1Jmax tm−1 + tσ < t ≤ tm − tσ,

J(t) = 0 tm − tσ < t ≤ tm. (7)

The Fourier representation for the part of the transmitter
current that is defined on the interval m is,

Jn(m) = Jmax
2

T0

(−1)m−1

∫ tm−tσ

t
m−1+tσ

dteiωnt. (8)

The integral gives,

Jn(m) = Jmax

2

nπ
(−1)m−1eiωnτm sin[ωn(∆tm − ts)], (9)

where, τm = 1

2
(tm + tm−1) and ∆tm = 1

2
(tm − tm−1).

The contribution from all intervals must be summed,

Jn =

M∑
m=1

Jn(m), (10)

which with equation 9 give,

Jn = Jmax
2

nπ

M∑
m=1

(−1)m−1eiωnτm sin[ωn(∆tm − ts)]. (11)

Equation 11 is our forward model for calculating the spec-
trum due to a given switching time sequence, SM .

The spectrum of the standard square wave can be ob-
tained by using M = 2 and ts = 0 in equation 11,

|Jn| = Jmax
4

nπ
[
1

2
(1 − (−1)n)]. (12)

This is a well known expression. It is only the odd har-
monics that contribute to the signal and the amplitude
of the first harmonic is a factor 4

π
higher than the trans-

mitter maximum current. A realistic square wave must
include the effect of the switching intervals,

|Jn| = Jmax
4

nπ
[
1

2
(1 − (−1)n)] | sin[ωn

1

4
(T0 − 2ts)]|. (13)

Equipped with a forward model (equation 11) that calcu-
late the frequency spectrum from the switching time se-
quence, the next step is to match the spectrum |Jn| with
a desired spectrum, In. This is an optimization problem
with the switching time sequence being the unknown. To
proceed we define the desired current spectrum, In, such
that all amplitudes add up to 100 percent. As an exam-
ple, if we target the second, third and fifth harmonic with
34 percent on the second harmonic and 33 percent on the
third and fifth harmonic, In is given by,

I2 = 34,

I3 = 33,

I5 = 33. (14)

All other values of In are set to zero. The spectrum |Jn|
will depend on the switching time sequence, SM . The
problem at hand is to find a switching time sequence,
SM , such that |Jn| has a distribution of amplitudes as
a function of harmonics that is as close to In as possi-
ble. One possible criterion is to minimize the least square
error, ε,

ε =

N∑
n=0

(|Jn| − aIn)2. (15)

The scale factor a is introduced so that the amplitudes
of |Jn| and In are comparable. An estimate for the scale
factor is given by the value that minimize equation 15 for
a given time sequence SM ,

a =

∑N

n=0
|Jn|In∑N

n=0
I2

n

. (16)

The maximum frequency, fmax, used in the optimization
determine the highest harmonic, N , to use in equation
16. We normally use a maximum frequency of 15 Hz since
higher frequencies are hard to utilize in an SBL survey,
accordingly, Nω0 = 2πfmax, or N = T0fmax.

At the outset we do not know the optimum value of M .
Equation 15 must be minimized for a range of M values
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Fig. 1: Square waves with (black) and without (red) a switching
time interval.

starting with M = 2. The maximum value of M will
vary with the complexity of the problem, however there
is clearly an upper limit when the switching interval, ts,
has a finite value. The total time the source is active
during one period, TEff , can be written,

TEff = T0 − Mts. (17)

We see that if T0 = 4 s and M = 10 then TEff = 3 s
for ts = 0.1 s. Hence, in the case of a finite ts, the power
output is reduced when M increase.

Equation 15 can in principle be solved by a local opti-
mization scheme. However, we have chosen a global opti-
mization scheme for this problem. We know that equation
15 has a multitude of local minima. The number of local
minima increase with the number of switching times, M .
Some of these local minima represent transmitter wave-
forms that are time shifted with respect to other wave-
forms in the solution space. These represent degenerate
solutions and one solution is just as good as another so-
lution. However, there are also local minima which rep-
resent distinctly different current spectra. There is also
a global minimum for one of the values of M . Actually,
there can be more than one “global minimum” for this
problem. The reason is the degeneracy that is mentioned
previously and which reflects the fact that solutions that
differs by a simple phase shift only, are equally good with
respect to the error functional and also with respect to
practical use.

The calculation of the spectral contributions |Jn| is very
fast so a Monte Carlo simulation is possible. We then
have a scheme which have the potential of avoiding local
minima. The scheme is as follows: The outer loop is over
M which vary from 2 to 20, unless we find the smallest

Fig. 2: Generalized square wave distributing currents mainly to
the first, second and fourth harmonic.

error for M > 14. In this case the maximum value of M
is increased further and we make sure that the smallest
error is found for a value of M that is sufficiently small
compared to the maximum value of M investigated. A
margin of 6 as indicated here is a good choice by our ex-
perience. For fixed M we vary the elements of SM using
a random number generator. We calculate the error, ε,
and compare with previous values. We store SM if the
error is the smallest so far. For all values of M we let the
number of iterations increase with a factor proportional
to M2, using M2 × 105 iterations for M = 2. We get ex-
cellent results with less iterations, but use a large margin
since the CPU time used to solve the problem is of no
importance. It is perfectly acceptable to spend 10 CPU
minutes for the calculation of a quantity that potentially
will be used for many SBL surveys.

Results

Figure 1 demonstrate the effect of a finite switching inter-
val. The red curve in Figure 1a is the transmitter time-
domain signal for an ideal square wave with period 4 sec-
onds. The current is running at an absolute value of 1000
A. The spectrum is shown as the red curve in Figure 1b.
The black curve in Figure 1a is the transmitter time do-
main signal for a square wave with a switching interval
of 100 ms. The spectrum is shown as the black curve in
Figure 1b. The spectra here and in the following are cal-
culated by repeating 10 periods of the time domain signal

 541SEG/San Antonio 2007 Annual Meeting



Shaping transmitter waveforms

before the Fourier transforms are performed. From Fig-
ure 1b we observe that the effect of the finite switching
intervals is small on the first harmonic, but we see a re-
duction of amplitude with frequency. This is an expected
effect since there must be reduced current amplitudes in
the spectrum due to the finite switching interval as can
be seen from equation 17.

Figure 2 show a solution to a design problem where we
require, I1 = 34, I2 = 33 and I4 = 33. At the same
time we require that there is no DC component in the
transmitter current spectrum. The switching interval is
80 ms and no solution is accepted unless all intervals with
an active source are larger than 200 ms. Figure 2a is the
transmitter time domain signal for a generalized square
wave with a period of 4 seconds. The best solution is
found for M = 4. The spectrum is shown in Figure 2b.
All the desired current amplitudes are larger than 600 A.

A real data example is shown in Figures 3 and 4. Fig-
ure 3a is the recorded transmitter time domain signal for
a generalized square wave with period 8 seconds. The
corresponding spectrum is shown in Figure 3b. The dis-
tribution of current amplitudes having 200 A or more are,

Jx(0.125 Hz) = 240A,

Jx(0.250 Hz) = 750A,

Jx(0.375 Hz) = 520A,

Jx(0.500 Hz) = 480A,

Jx(0.625 Hz) = 370A,

Jx(1.250 Hz) = 200A. (18)

The inline electric receiver data for these frequencies are
shown in Figure 4. The color coding is,

Ex(0.125 Hz) = black,

Ex(0.250 Hz) = red,

Ex(0.375 Hz) = blue,

Ex(0.500 Hz) = green,

Ex(0.625 Hz) = grey,

Ex(1.250 Hz) = cyan. (19)

The data clearly demonstrate the frequency dependent
absorption of marine electromagnetic data. The strongest
transmitter current is for the frequency of 0.25 Hz and the
electric field amplitude for this frequency is the largest up
to approximately 8 km. For higher offsets the electric field
amplitude for 0.125 Hz is the largest even if the current
amplitude is less than 1/3 of the 0.25 Hz current ampli-
tude. This is due to less absorption at this frequency.
The current amplitudes at 0.125 Hz and at 1.25 Hz are
of similar size. Comparing the electric fields at these fre-
quencies we see that the 1.25 Hz data stay above the noise
floor up to 5 km whereas the 0.125 Hz data stay above the
noise floor for all offsets. These data are recorded with
the EMGS generation I receivers. The noise floor for the
generations II receivers is one order of magnitude lower,
this makes it possible to utilize high frequency data to
even higher offsets.

Fig. 3: Recorded transmitter waveform with period 8 seconds.
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Fig. 4: Recorded inline electric field due to waveform in Figure 3.

Conclusion

We have introduced a method for generating transmitter
waveforms that give the possibility to adapt the frequency
distribution of the current amplitudes to a desired distri-
bution. The method is designed to maximize the time
the source is switched on at maximum power. We ob-
serve that by introducing this generalized square wave, we
have a large freedom in distributing current amplitudes
between different frequencies. In contrast to the standard
square wave we can have relatively large currents on both
even and odd harmonics. We have also tested the method
in data acquisition and demonstrated that recorded sig-
nals behaves according to what we expect from the theory.
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