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ABSTRACT

Concepts such as reflections, refractions, diffractions, and
transmissions are very useful for the interpretation of seismic
data. Moreover, these concepts play a key role in the design
of processing algorithms for seismic data. Currently, how-
ever, the same concepts are not widely used for the analysis
and interpretation of marine controlled-source electromag-
netic (CSEM) data. Connections between seismic and marine
CSEM data are established by analytically transforming the
diffusive Maxwell equations to wave-domain Maxwell equa-
tions. Seismic data and wave-domain electromagnetic data
are simulated with 3D finite-difference schemes. The two
data types are similar; however, the wave-domain electro-
magnetic data must be transformed back to the diffusive
domain to properly describe realistic field propagation in
the earth. We analyzed the inverse transform from the wave
domain to the diffusive domain. Concepts like reflections,
refractions, diffractions and transmissions were found to be
valid also for marine CSEM data but the properties of the in-
verse transform favored refracted and guided events over re-
flected and diffracted events. In this sense, marine CSEM data
were found to be similar to refraction seismic data.

INTRODUCTION

Concepts such as reflections, refractions, diffractions, and trans-
missions are very useful for the interpretation of seismic data. Like-
wise, these concepts also play a key role in the design of processing
algorithms for seismic data. Currently, however, the same concepts
are not widely used for the analysis and interpretation of marine
controlled-source electromagnetic (CSEM) data. Here, I will dem-

onstrate that these seismic wave propagation concepts can be ap-
plied to the interpretation of marine CSEM data. By establishing
connections between seismic and marine CSEM data, I hope to
make marine CSEM data more accessible to those who have a basic
understanding of seismic wave propagation.
Low-frequency electromagnetic fields as we observe them in

marine CSEM surveys are diffusive in nature. For the frequency-
domain Maxwell equations, we know that the ratio of the imaginary
part of the wavenumber to the real part of the wavenumber is of
order unity. Lossless and dispersionless field propagation will hap-
pen if the imaginary part of the wavenumber is zero and if the phase
velocity is independent of frequency. Although this is an approxi-
mation that is often used for seismic wave propagation, it is not
realistic. Absorption and dispersion effects are present in observed
seismic wavefields. Thus, a description of realistic seismic wave
propagation requires a complex wavenumber to account for absorp-
tion effects and a frequency-dependent phase velocity to give proper
causal fields. The frequency dependence of the phase velocity is a
consequence of the Kramers-Kronig relation for the real and imagi-
nary part of the wavenumber (Aki and Richards, 1980). Absorption
of seismic data is commonly quantified by the dimensionless qual-
ity factor Q. If the absorption effects are not too extreme, we find
that the ratio of the imaginary part of the wavenumber to the real
part of the wavenumber is approximately 1

2Q. The Q-factor for sedi-
mentary rocks can be as low as 10 (Newman and Worthington,
1982; Amundsen and Mittet, 1994). More common values are
Q ∼ 30–200 for sedimentary rocks. An igneous rock such as granite
can have Q ¼ 1000. Thus, we observe that the ratio of the imagi-
nary part of the wavenumber to the real part of the wavenumber is
typically two orders of magnitude smaller for seismic wave propa-
gation when we compare with low-frequency electromagnetic field
propagation.
Concepts such as reflections and transmissions are used in the

analysis of anelastic seismic wave propagation. The reflection and
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transmission coefficients are fully determined by the relevant boun-
dary conditions (White, 1965; Ursin and Stovas, 2002; Carcione,
2007). Carcione (2007) discusses a correspondence principle for seis-
mic waves in which a viscoelastic solution can be obtained if the elas-
tic solution is known. The procedure involves replacing the elastic
moduli with the corresponding viscoelastic moduli. This correspon-
dence principle can be applied to the analysis of reflection and trans-
mission coefficients. There is no limitation on the absorption strength
when it comes to the validity of this approach. Thus, as an example, if
the elastic reflection coefficient is given by the impedances in layer 1
and layer 2 as R ¼ ðZ2 − Z1Þ∕ðZ2 þ Z1Þ, then the corresponding
anelastic reflection coefficient will be given as RðωÞ ¼ ðZ2ðωÞ−
Z1ðωÞÞ∕ðZ2ðωÞ þ Z1ðωÞÞ. The impedances are determined by
the elastic or anelastic moduli in layer 1 and layer 2, the correspond-
ing densities and the horizontal wavenumber. As mentioned, the
above procedure is valid also for strong absorption. In other words,
we do not have to abandon classical concepts such as reflections and
transmissions even for strong absorption. However, the frequency-
dependent behavior of wavenumbers, reflection coefficients, and
transmission coefficients can give rise to very different field behav-
ior depending on whether the absorption effects are weak or strong.
A symmetric treatment of acoustic/elastic field equations and

electromagnetic field equations is not new. Auld (1973) discusses
the electromagnetic-acoustic analogy in detail and states that a pre-
sentation of the acoustic field equations in a form analogous to the
Maxwell equations simplifies the task of transferring to acoustics
the analytical methodology and techniques that have been applied
to solve problems in electromagnetism. The analysis performed by
Auld (1973) is valid for conducting media. Ursin (1983) gives a
unified treatment of elastic and electromagnetic wave propagation
in horizontally layered media. Also, the analysis performed by
Ursin (1983) is valid for conducting media and reflection, and
transmission coefficients are integral parts of his formalism. The
formulation of Ursin (1983) has later been extended to include
electromagnetic anisotropy (Løseth and Ursin, 2007). Carcione
(2007) devotes one chapter of his book to the acoustic-electromag-
netic analogy. He discusses the complete parallelism for the reflec-
tion and transmission problem in acoustics and electromagnetism.
He considers the most general situation, meaning the presence of
anisotropy and attenuation. Attenuation is due to viscosity in the
acoustic case and conductivity in the electromagnetic case.
The analysis provided in the present paper is based on a transform

method for solving parabolic partial differential equations. The key
element of the transform method is that a parabolic partial differ-
ential equation can be analytically transformed to a corresponding
second-order hyperbolic partial differential equation. The solution
of the hyperbolic partial differential equation can then subsequently
be back-transformed to give the solution to the proper parabolic
partial differential equation. This inverse transform is over the time
axis only. Parabolic partial differential equation are typical for dif-
fusion problems, whereas second-order hyperbolic partial differen-
tial equation are typical for wave propagation problems. A partial
differential equation of the first order in the time derivatives and
second order in the spatial derivatives will be parabolic, whereas
a partial differential equation of the second order in the time deriv-
atives and second order in the spatial derivatives will be second-
order hyperbolic.
Marine CSEM is a low-frequency method. Inspection of the

Maxwell equations for a conductive medium shows that there is a

first-order time derivative term giving rise to the conduction current
and a second-order time derivative term causing the displacement
current. The term in the Maxwell equations giving rise to the dis-
placement current can be neglected for low-frequency field propa-
gation in a conductive medium, such as in marine CSEM. This gives
solutions to the Maxwell equations in the quasistatic or diffusive
limit that are accurate for marine CSEM applications. Thus, the
problem at hand for marine CSEM is the solution of a parabolic
partial differential equation. Lee et al. (1989) show that proper
solutions to the Maxwell equations in the diffusive limit can be
obtained by a transformation method in which the field to be trans-
formed is the solution of a wave equation. Avery elegant and useful
analysis of this transformation method is given by de Hoop (1996).
His formulation of the correspondence principle for time-domain
electromagnetic wave and diffusion fields is essential to the discus-
sion that follows.
The present paper demonstrates similarities between seismic

wave propagation and field propagation relevant for marine CSEM.
The seismic wavefields will be approximated by acoustic fields in
this work. The acoustic approximation is sufficient to demonstrate
the points I want to make here. The fields in the acoustic and
electromagnetic examples will be calculated by 3D finite differ-
ences. For the seismic examples, I will use snapshots and shot gath-
ers, and the interpretation of these should be straightforward and
familiar. The electromagnetic examples may potentially cause some
misunderstanding. The electromagnetic fields shown in the snap-
shots and shot gathers are in a fictitious time domain. These fields
behave like waves and are nondiffusive. However, the transform
function that take these fields back to the diffusive, “real world,”
is known and fairly simple. A key element in this paper is to under-
stand the effect of the transform from the fictitious domain to the
diffusive domain. It will be clear from the examples that the electro-
magnetic fields in the fictitious domain share properties such as re-
flection, transmission, refraction, and diffraction with the acoustic
fields. The question to answer is which of these modes survive the
inverse transform from the fictitious time domain to the diffusive
frequency domain.

THEORY

We shall here be concerned with acoustic and electromagnetic
field propagation. The underlying simulation method will in both
cases be 3D high-order finite differences. The electromagnetic
fields will be analyzed in the time and the frequency domain. The
following Fourier transform convention is used:

fðωÞ ¼
Z

∞

−∞
dtfðtÞeiωt;

fðtÞ ¼ 1

2π

Z
∞

−∞
dωfðωÞe−iωt: (1)

Let us first turn to the acoustic case, which is straightforward.

The acoustic case

The acoustic wave propagation problem is given by Newton’s
second law and the constitutive relations:
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∇ · vðx; tÞ þ κðxÞ∂tPðx; tÞ ¼ 0;

∇Pðx; tÞ þ ρacðxÞ∂tvðx; tÞ ¼ fðx; tÞ; (2)

where v is particle velocity, P is pressure, f is a force-density source
function, κ is the compliance or inverse bulk modulus, and ρac is the
density. For most of the simulations performed here the density will
be kept constant at 1000 kg∕m3. The variable density case is dis-
cussed in Appendix A. The propagation velocity is given by the
compliance and density as

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ρacκðxÞ

s
: (3)

The high-order finite-difference scheme used is an acoustic reduc-
tion of the 3D elastic scheme discussed in Mittet et al. (1988). The
acoustic field in the simulation examples is excited by a vertical
force density. The finite-difference simulations are done for the
coupled system in equation 2. The resulting wave equation for the
particle velocity is

ρacκðxÞ∂2t vðx; tÞ − ∇∇ · vðx; tÞ
þ ∇ lnðκðxÞÞ∇ · vðx; tÞ ¼ κðxÞ∂tfðx; tÞ; (4)

which demonstrate that the coupled system in equation 2 forms a
second-order hyperbolic partial differential equation.

The electromagnetic case

The electromagnetic part of the present work is based on Mittet
(2010), which again is based on Lee et al. (1989) and de Hoop
(1996). In particular, Mittet (2010) follows the formulation of de
Hoop (1996), the main difference is that Mittet (2010) uses Fourier
transforms from time to frequency whereas de Hoop (1996) uses
Laplace transforms.
The Maxwell equations in the quasistatic limit are

−∇ ×Hðx; tÞ þ σðxÞEðx; tÞ ¼ −Jðx; tÞ;
∇ × Eðx; tÞ þ μ∂tHðx; tÞ ¼ 0; (5)

where E and H are electric and magnetic vector fields. The source
term is the electric current density J. The conductivity tensor is σ.
The finite-difference implementation is anisotropic, but such that
only diagonal elements of the conductivity tensor differ from zero.
For the following examples of electromagnetic field propagation, it
is sufficient to use the isotropic approximation. Thus, the conduc-
tivity tensor σ will be replaced with a scalar conductivity σ. The
magnetic permeability μ is assumed isotropic and equal to the value
in vacuum. This is a common assumption for sedimentary rocks.
The electromagnetic field in the simulation examples is excited with
an electric current density in the x-direction. The coupled system in
equation 5 gives an equation for the electric field as

μσðxÞ∂tEðx; tÞ þ ∇ × ∇ × Eðx; tÞ ¼ −μ∂tJðx; tÞ; (6)

which demonstrates that the coupled system in equation 5 forms a
parabolic partial differential equation. The frequency-domain rep-
resentation of equation 6 is

∇ × ∇ × Eðx;ωÞ − iωμσðxÞEðx;ωÞ ¼ iωμJðx;ωÞ: (7)

This system can be solved as a set of linear equations.
The isotropic nondiffusive representation of the Maxwell equa-

tions is

−∇ ×H 0ðx; t 0Þ þ ϵ 0ðxÞ∂t 0E 0ðx; t 0Þ ¼ −J 0ðx; t 0Þ;
∇ × E 0ðx; t 0Þ þ μ∂t 0H 0ðx; t 0Þ ¼ 0; (8)

where ϵ 0ðxÞ is the electric permittivity. The primes for the electric
fields, the magnetic fields, and the electric permittivity in equation 8
are used to distinguish these fields from the diffusive fields in equa-
tion 5. The reason for this is that there is a transformation relation
between the nondiffusive field in equation 8 and the diffusive field
in equation 5 if

σðxÞ ¼ 2ω0ϵ
0ðxÞ; (9)

where ω0 is an arbitrary positive constant. The primed fields must
be viewed as existing in a fictitious time domain. The transforma-
tion relation is discussed in detail in Mittet (2010) in which it is
demonstrated that solving the problem in equation 8 with equation 9
gives sufficient information to obtain the field solutions to the dif-
fusive problem in equation 5.
The propagation velocity in equation 8 is given by the magnetic

permeability and electric permittivity as

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

μϵ 0ðxÞ

s
: (10)

The resulting wave equation for the electric field is

μϵ 0ðxÞ∂2t 0E 0ðx; t 0Þ þ ∇ × ∇ × E 0ðx; t 0Þ ¼ −μ∂tJ 0ðx; t 0Þ;
(11)

which demonstrates that the coupled system in equation 8 forms a
second-order hyperbolic partial differential equation.
Note that the propagation velocity in equation 10 can be

written as

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0ρðxÞ

μ

s
; (12)

with the resistivity ρðxÞ as the reciprocal of conductivity. The re-
sistivity ρðxÞ for the electromagnetic case should not be confused
with the constant density ρac for the acoustic case.
From the fictitious time domain to the real frequency domain, the

transformation relation between the electric field components is

Eiðx;ωÞ ¼
Z

T

0

dt 0E 0
iðx; t 0Þe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 : (13)
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This is equation 17 in Mittet (2010) and is also the equation I will
use here when I analyze the electromagnetic field propagation. The
transform in equation 13 is valid with the constraint that E 0

iðx; t 0Þ is
causal; hence, we must ensure E 0

iðx; t 0 ≤ 0Þ ¼ 0. The fictitious
field E 0

iðx; t 0Þ becomes a Green’s tensor field G 0EJ
ij ðx; t 0jxsÞ if it

is excited by temporal and spatial Dirac distributions

J 0
jðx; t 0Þ ¼ δðx − xsÞδðt 0 − 0þÞ; (14)

where the excitation time is chosen such that the field is causal.
Equations 11 and 17–20 of Mittet (2010) can then be combined

to give

GEJ
ij ðx;ωjxsÞ ¼

ffiffiffiffiffiffiffiffiffi
−iω
2ω0

s Z
T

0

dt 0G 0EJ
ij ðx; t 0jxsÞe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 :

(15)

A rigorous derivation of this relation, based on de Hoop (1996), is
given in Appendix B.

RESULTS

Before we can proceed to the simulation examples, I will define
events such as reflection, transmission, refraction, diffraction, and
guided field as used in this paper. Some of these terms have different
meanings within different fields of physics. The terminology used
here is the one most commonly used in the analysis of seismic data.
The above-mentioned events are caused by variations in medium
properties. For the simplicity of the following discussion, I will as-
sume that these variations in medium properties are velocity con-
trasts. I will use a half-space model to explain the usage of the above
terms by example. I assume that the interface is horizontal and nor-
mal to the depth or z-axis. Sources and receivers are assumed to be
in the upper layer. The source is at the origin, and receivers can be at
any offset from the source. Furthermore, for this example, I assume
that the propagation velocity is higher in the lower layer than in the
upper layer. The direct contribution from the source to the receiver
is trivial and is not part of the ensuing discussion. Thus, due to the
type of velocity contrast, there will be a critical angle as derived by
Snell’s law. The critical angle can be equated to a critical offset
in such a way that for offsets less than the critical offset we have
precritical reflections. For angles larger than the critical angle, the
absolute value of the reflection coefficient is unity and we observe
total reflection of the incoming field. However, there is one addi-
tional field contribution present if the lower layer has higher propa-
gation velocity than the upper layer. This additional part of the
field enters the lower medium at the critical angle and propagates
horizontally along the interface with the velocity of the lower layer.
These types of waves are known as head waves or conical waves.
They refract energy back to the upper layer at minus the critical
angle. In seismic literature, they are also known as refracted waves.
At a sufficiently large source-receiver offset, the refracted wave will
be the first arrival for the given model. One particular property of
the refracted wave is that it will not have the same waveform as the
direct wave. As stated in Aki and Richards (1980), the refracted
wave will be smoother than the direct wave. The particular type
of waveform modification corresponds to an integration in the time
domain or a multiplication with 1∕iω in the frequency domain.
The low-frequency part of the spectrum for the refracted wave is

amplified compared with the direct wave. The samewaveform mod-
ification of refracted events will happen for electromagnetic signals
in the fictitious time domain (wave domain). The refraction events
will be explicitly identified on snapshots and shot gathers.
For the simulation examples I show here, there is an event that is

closely related to the refracted field. It will in the following be de-
noted as the guided field. It will be negligible in the acoustic exam-
ples in which a constant density is assumed, but it will be significant
in the electromagnetic examples. The acoustic variable density case is
discussed in Appendix A. In this case, there are strong guiding effects
also for the acoustic case. As stated, the guided field is closely related
to the refracted field but is not excited at a single interface. However,
if we change the half-space model to a full-space model with a
thin horizontal high-velocity layer inside, then guiding may happen.
It so happens that for the examples I show here, the constant density
acoustic medium will not support a guided field whereas the electro-
magnetic medium will. Refracted and guided fields will have a linear
moveout in a shot gather. The guided field in the wave domain ex-
periences a similar smoothing as the refracted field. It is possible to
modify the diffusive domain formalism for the guided field developed
by Mittet and Morten (2013) to the wave domain. The result is that
the guided response in the fictitious time domain will appear as a
smoothed version of the direct signal in the same manner as the re-
fracted signal. The amount of smoothing corresponds to an integra-
tion of the direct signal.
The term transmission as used here is for field contributions that

have a downward propagating component after passing an interface
on the way down or an upward propagating component after pass-
ing an interface on the way up. Diffractions cannot be explained by
the half-space model. They can be caused by different sorts of
velocity contrasts. A positive or negative velocity contrast in a full-
space model may cause a diffracted event if the contrast has spatial
dimensions of the size of a wavelength. As we will see below, dif-
fractions may also be generated by corners or edges in the velocity
model. Diffractions will appear as circular or semicircular in the
snapshots that follows.

The seismic case

I will first present results from a seismic/acoustic simulation. It is
a deep-water case with generally high propagation velocities in the
formation. The results from the simulation of seismic data in this
model will be compared with electromagnetic data simulated in an
analogous model. A cross section of the velocity model used for the
acoustic example is shown in Figure 1. The model is invariant nor-
mal to this cross section. The model consists of a 2-km-thick water
layer with a propagation velocity of 1500 m∕s. The maximum
depth of the model is 6 km. The formation propagation velocities
are, in general, high. Immediately below the seabed, the propagation
velocity is 2683 m∕s. On the left side of the model, there is a 1-km-
thick layer with a propagation velocity of 5366 m∕s. On the right
side of the model, there is a 100-m-thick layer with a propagation
velocity of 20; 782 m∕s. This layer starts at a depth of 3.2 km.
The lower 2 km of the model consist of a layer with a propagation
velocity of 8484 m∕s. Propagation velocities in rock are reported up
to 8000 m∕s. One material that is reported with propagation veloc-
ities approaching 20;000 m∕s (12;000–18;000 m∕s) is diamond. The
choice of acoustic propagation velocities will become clear when the
electromagnetic example is discussed.
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The source is placed at a distance of xs ¼ 0 km and ys ¼ 0 km.
The source depth is zs ¼ 1.96 km. Receivers are placed on the
seabed from distance −9 km to distance 9 km in x and at y ¼
0 km. The time behavior of the vertical force
density used equals a first-order derivative of
a Gaussian with a maximum frequency of
23 Hz. The grid step lengths are 20 m in all three
spatial directions.
Figure 2 shows snapshots of the vertical com-

ponent of particle velocity. The snapshots in Fig-
ure 2a–2d are for times of 0.45, 0.69, 0.93, and
1.66 s. Figure 2a shows four events. The direct
upgoing field is trailed by the seabed reflection.
There is a transmitted wave, and there is a strong
refracted event due to the large velocity contrast
at the seabed. Those four events are also present
in Figure 2b. In addition, there is a strong reflec-
tion from the thin high-velocity layer on the right
side of the model and a modification of the trans-
mitted wave due to the same thin layer.
The most prominent additional events in

Figure 2c are two diffractions. One is centered
at distance −1.8 km and depth 3 km. The second
diffraction is centered at the tip of the high-veloc-
ity layer. There are also reflections from the bot-
tom layer for this time. Thus, at 0.93 s several
wave modes are present for this velocity model:
direct waves, transmitted waves, reflected waves,
refracted waves, and diffracted waves.
The field distribution becomes increasingly

complicated at later times as is evident in Fig-
ure 2d. The reflection from the free (air-water)
surface is a strong event and is also clearly vis-
ible. There are also additional refracted events
related to the top and bottom interfaces of the left
side 1-km-thick layer. Note that these refracted
events will be the first arrivals at the seabed receiv-
ers at large negative offsets. It is also a buildup of
multiple events at later times.
Figure 3 is a shot gather for the acoustic sim-

ulation. The recorded data are the vertical compo-
nent of particle velocity. Some of the events
identified on the snapshots are tagged. This will
simplify the comparison with the electromagnetic
simulation discussed below. Note that the seabed
refracted event is the first arrival even at very small
offsets and that the moveout is linear.

The electromagnetic case

We next proceed to the electromagnetic case.
A cross section of the resistivity model used for
the marine CSEM example is shown in Figure 4.
This model has the same geometry as the velocity
model in Figure 1. The water layer has a resis-
tivity of 0.3125 ohm-m, the top formation has
a resistivity of 1.0 ohm-m, the 1-km-thick layer
on the left side of the model has a resistivity of
4 ohm-m, and the bottom layer has a resistivity
of 10.0 ohm-m. These are all realistic formation

resistivities. The thin layer on the right side of the model has a re-
sistivity of 60.0 ohm-m, which is a realistic value for a hydrocarbon-
filled reservoir. Note that the resistivity model in Figure 4 is mapped

Figure 1. The cross section of the 3D velocity model.

Figure 2. Snapshots of the vertical component of particle velocity.
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to the velocity model given in Figure 1 by the resistivity-velocity
transformation given in equation 12 if ω0 ¼ 2πf0 with f0 ¼
0.7198 Hz. The temporal behavior of the transmitter current is iden-
tical to the temporal behavior of the vertical force density used as
source for the acoustic simulation. Source and receiver locations
are identical to those for the acoustic simulations. The source is
a horizontal electric dipole oriented in the x-direction. The grid step
lengths are 20 m in all three spatial directions. The high frequency
and the fine grid are used here for demonstration purposes. Lower
frequencies and a coarser grid are used in practical simulations.
These issues are discussed in detail in Mittet (2010).
Figure 5 shows snapshots of the inline component of the

electric field Ex. The electric field is here in the fictitious time
domain, thus some care must be taken in the interpretation of
these snapshots. However, note that all the information necessary
to obtain the proper diffusive electric field is present in the ficti-
tious time-domain field. The snapshots in Figure 5a to 5d are
for times 0.45, 0.69, 0.93, and 1.66 s. Figure 5 can be compared
to Figure 2. The same events are present in Figure 5a as in
Figure 2a. The inline electric field consists of a direct upgoing wave
trailed by the seabed reflection. There is a transmitted wave, and
there is a strong refracted event due to the large contrast at the
seabed.

There is a strong reflection from the thin layer in Figure 5b. This
event has a counterpart in Figure 2b. There is an additional event
present in Figure 5b with no counterpart in Figure 2b. This is a re-
sponse from a guided wave propagating as a vertical electric field
component in the thin resistive layer. The models used here support
a guided wave in the electromagnetic case but not in the acoustic
case. The reason for this difference is discussed in Appendix A.
The two diffractions observed in Figure 2c are also present in

Figure 5c. The same is the case for the bottom layer reflection.
Figure 5d is very close to Figure 2d in terms of number of events
and their spatial distribution. Amplitudes will differ for individual
events since the governing equations, and hence the reflection and
transmission properties differ in acoustics and electromagnetics.
However, the similarities between the acoustic and electromagnetic
fields are much more striking than their differences. It is undisputed
that events such as reflections, transmissions, refractions, and dif-
fractions are present in the acoustic field. Comparing Figure 5 with
Figure 2, it is clear that the same is the case for the electromagnetic
field as long as it is in the fictitious time domain. However, the
transform from the fictitious time domain to the real frequency do-
main, given in equation 13, is almost trivial and is over the time
coordinate only. There is no spatial integration involved in the trans-
form, which implies that any mixing of different events will happen

along the time axis only. This is exactly what
happens in a time- to frequency-domain Fourier
transform. Consider transforming the acoustic
data in Figure 3 from time to frequency. The data
have events that can be identified as reflections,
refractions, and diffractions. These events must
still be considered to be reflections, refractions,
and diffractions in the frequency domain. The
complex amplitude at a given frequency will
contain information from multiple events unless
the data are completely dominated by one event
only.
Figure 6a shows a snapshot of the inline elec-

tric field, and Figure 6b shows a snapshot of the
vertical electric field. Both snapshots are at the
time of 0.69 s. The scaling is identical for both
components. The snapshots demonstrate the
fact that the electric field becomes vertically po-
larized in the thin resistive layer. This vertical
component propagates with high velocity in
the horizontal direction and inside the thin layer.
At the same time, this guided wavefield will cou-
ple to the formation above and below and excite
horizontal electric field components that travel
upward and downward with a propagation direc-
tion having a small angle with the vertical axis.
This event will be the first arrival at the receivers
given a sufficiently large offset. For the given
model, the guided event will be the first arrival
for offsets above approximately 3 km. The move-
out is linear as for refracted waves.
Figure 7 is a shot gather for the electromag-

netic simulation. This shot gather shows mostly
the same events as the acoustic shot gather in
Figure 3. The main difference is the response
from the guided wave, which is present in the

Figure 3. Shot gather for the vertical component of particle velocity.

Figure 4. The cross section of the 3D resistivity model.
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electromagnetic data but not in the acoustic data. The shot gather in
Figure 3 has one common scale factor for all data points. The same
is the case for the shot gather in Figure 7. Thus, many events are
hard to identify with this choice of scaling. Figure 8 shows the same
data as in Figure 3, but here, each time trace is normalized to unity.
There are some undesired effects due to this particular choice of
scaling at very large negative and positive offsets, but the result
is that many more events become visible. With the chosen scaling,
it is easier to expose the properties of the transform from fictitious
time to frequency. Figure 9 shows the same data as seen in Figure 7
but with each trace normalized to unity. Comparing Figure 8 and
Figure 9, it is striking how similar the acoustic and electromagnetic
data are. The main difference is the guided events. The response from
the guided wave is marked in Figure 9. Note that approximately 0.5 s
later, there follows an event with a similar dip an-
gle. Thewaveguide is actually triggered more than
once for this particular model. The secondary
event is triggered by the reflection from the bot-
tom layer. As will be demonstrated below, the
transform from fictitious time to real frequency is
such that it will weigh down this secondary event
relative to the primary event for frequencies above
0.1 Hz, which is in the low-frequency range of
marine CSEM survey data.

From fictitious time to frequency

The data in Figure 7 are the starting point for
the transformation to the diffusive frequency-
domain data. The transform kernel in equation 13
has a damping term e−

ffiffiffiffiffiffiffi
ωω0

p
t 0 and a phase term

ei
ffiffiffiffiffiffiffi
ωω0

p
t 0 . Figures 10–15 display the fictitious

time-domain electric field multiplied by the
damping term for different frequencies. These
data sets are damped versions of the data set in
Figure 7. Let the damped field be denoted as ~Ei,
such that

~Eiðx; t 0jωÞ ¼ E 0
iðx; t 0Þe−

ffiffiffiffiffiffi
ωω0

p
t 0 : (16)

The damping term is frequency dependent, and
the damping effect increases with increasing
frequency.
Figure 10 shows ~Ei data for a frequency of

0.01 Hz. There is an amplitude reduction for the
late arrivals, but it is a weak effect. The ~Ei field
must be multiplied by an amplitude-preserving
phase term and integrated over time to obtain
the frequency-domain electric field. Equation 13
reformulated in terms of the ~Ei field is

Eiðx;ωÞ¼
Z

T

0

dt 0 ~Eiðx; t 0jωÞei
ffiffiffiffiffiffi
ωω0

p
t 0 : (17)

The above equation behaves as a Fourier trans-
form with an effective angular frequency ωeff,
such that ωeff ¼ ffiffiffiffiffiffiffiffiffi

ωω0

p
or effective frequency

feff ¼
ffiffiffiffiffiffiffiffi
ff0

p
.

At any offset, a multitude of events will contrib-
ute to the amplitude and phase of the frequency-

domain electric field. The phase term in equation 17 has the absolute
value of unity. For the data shown in Figure 10, we note that early and
late arrivals in the fictitious time domain may have a significant con-
tribution to the complex frequency-domain amplitude.
Figure 11 shows ~Ei data for a frequency of 0.033 Hz. Comparing

Figure 11 to Figure 10, the effect of the transform for increased
frequency becomes clear. The late arrivals have a reduced ampli-
tude. This makes perfect sense because the frequency-domain field
in equation 17 is diffusive in nature and the skin depth effect must
apply to this field. The skin depth effect dictates that as the fre-
quency increases the field contributions that have a long propaga-
tion path should be reduced in amplitude. The damping effect can
be seen to increase further from Figure 12 to Figure 15 in which the
frequency increases from 0.1 to 3.33 Hz.

Figure 5. Snapshots of the inline electric field.
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The damping effect is the dominating effect when the frequency-
domain electric field is extracted from the fictitious time-domain
electric field and the frequency is 0.1 Hz or higher. However, there
is an additional, more subtle effect that must be considered for
frequencies below 1.0 Hz. Let us take the 0.333 Hz data in Figure 13
as an example. The time traces at offsets −6 km and þ6 km are
shown strongly amplified. For the trace at þ6 km, there are four
remaining events after the application of the damping term. The first
arrival at 1.25 s is the guided event. The second arrival at 1.75 s is
also a guided event, but excited by the upcoming reflected field. The
third event at 2.3 s, which is fairly weak, is the field refracted below
the seabed. The fourth event at 2.45 s is strong. This is the reflection
from the thin high-resistivity layer. Apparently, this event should

contribute significantly to the transform from the fictitious time do-
main to the frequency domain. The conclusion would then be that it
is the reflection that gives the main contribution to marine CSEM
data at large offsets and not the response from the guided wave. This
is not so. This can be verified by inspecting the cumulative behavior
of the frequency-domain response in equation 17:

Eiðx;ωÞ ¼
Z

τ

0

dt 0 ~Eiðx; t 0jωÞeiωeff t 0

þ
Z

T

τ
dt 0 ~Eiðx; t 0jωÞeiωeff t 0 : (18)

The second term on the right side has only negligible contributions
to Eiðx;ωÞ if the split in time integration is set to
τ ¼ 2 s. Thus, the integration over the refracted
event and the reflected event that arrives later
than 2 s does not contribute significantly to the
complex amplitude. In fact, the transformation
over the two first, guided events gives 95% of the
contribution to the amplitude of the frequency-
domain response. The refracted event is small
in the fictitious time domain, so a small contribu-
tion to the frequency-domain amplitude can be
expected. However, the relatively large reflected
event gives only a small frequency-domain con-
tribution. This requires an explanation.
First, it is important to note that the effective

frequency in the Fourier transform in equation 17
is small compared with the dominant frequency
for the signals in the fictitious time domain. The
effective transform frequency in equation 17 is
feff ¼ 0.49 Hz. The dominant frequency for the
signals in the fictitious time domain is 10 Hz, and
the maximum frequency is greater than 20 Hz.
The Fourier transform in equation 17 will depend
on the low-frequency part of the spectrum of the
signal in the fictitious time domain. It has already
been mentioned that the refracted and guided
responses in the fictitious time domain will be
smoother than the direct and reflected contribu-
tions and that this smoothing effect amounts to a
time integration of the emitted signal from the
transmitter. In these simulations, the transmitter
current varies as the first-order derivative of a
Gaussian. The direct electric field below a hori-
zontal electric dipole will dominantly have a
signal form that goes as the time derivative of
the current (see equation A-5 in Mittet, 2010).
That is the second-order derivative of a Gaussian
(Ricker wavelet) for the given example. There
are also near-field contributions that behave as
the first-order derivative of the Gaussian or the
Gaussian itself, but these contributions can be
neglected at distances above a few typical wave-
lengths or for distances above approximately
300 m for the examples here. The reflected wave-
forms will also be proportional to the second-
order derivative of a Gaussian. However, re-
fracted and guided events will be proportional

Figure 6. (a) Snapshots of the inline and (b) the vertical electric fields.

Figure 7. Shot gather for the inline electric field.
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to the first-order derivative of a Gaussian. In Appendix C, I dem-
onstrate how the first- and second-order derivatives of the Gaussian
contribute to the transform in equation 13 or the equivalent trans-
form in equation 17. A result from Appendix C is that a time-
domain signal proportional to the second-order derivative of the
Gaussian may have a much larger amplitude than a time-domain
signal proportional to the first-order derivative of the Gaussian and
still give a much smaller frequency-domain contribution in the
transform defined by equation 17. Gaussian waveforms are conven-
ient for the examples, but these results are valid for other transient
and band-limited waveforms. The smoothing effect experienced by
refractions and guided events will boost the low-frequency compo-
nents of the signal spectra compared with direct and reflected
events. The effective transform frequency in equation 17 is small
and will be sensitive to these modifications of the low-frequency
components of the signal spectra. Thus, the net effect for the trans-

form from the fictitious time domain to the frequency domain is that
refracted and guided events will give relatively larger contributions
to the complex field amplitude than reflected events.
This effect is apparent for the first event on the þ6 km trace in

Figure 13. The guided response behaves as a first-order derivative of
a Gaussian prior to the application of the damping term. The integral
over the guided event at 1.25 s gives the main contribution to the
complex frequency-domain amplitude. The rest of the contribution
comes from the additional integral over the second guided event
at 1.75 s.
Refracted events are smoothed in the same way as the guided

events. The net effect is that also these types of events give relatively
large contributions when the electromagnetic fields are transformed
from the fictitious time domain to the diffusive frequency domain.
The contribution from the refracted event at time 2.3 s and offset
þ6 km in Figure 13 is small because the amplitude is relatively

Figure 9. Normalized shot gather for the inline
electric field.

Figure 8. Normalized shot gather for the vertical
component of particle velocity.
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small. However, this event is important at smaller offsets. From
Figure 13, we see that it is stronger than the guided event up to
3 km. The refracted event would give the main contribution to the
observed field also at large offsets in the absence of the thin resistive
layer. The 1-Hz data are shown in Figure 14. The damping effect is
now so strong that the guided event at 1.25 s completely dominates.
Figure 15 shows the damped electric field at 3.33 Hz. The only sur-
viving contribution is the guided field.
For frequencies between 0.1 and 3.33 Hz, which are in the typical

marine CSEM frequency band, we observe that at any offset the
early arrivals give important contributions to the frequency-domain
data. Early arrivals at intermediate and large offsets are usually
refracted and guided events. Reflections and diffractions at inter-
mediate and large offsets are late arrivals. Their contribution is less
important in marine CSEM compared with refracted and guided

events. This effect is exposed by analyzing the marine CSEM
experiment in the fictitious time domain in which contributions
from late-arriving reflections are quenched by the exponential
damping term in the transform. As mentioned, there is an additional
effect in the transform from fictitious time to diffusive frequency
that further reduces the contribution from reflections. The effective
transform frequency feff is relatively small; thus, smoothed events
in the fictitious time domain, such as refractions and guided events,
give relatively large frequency-domain amplitudes compared with
reflections even if their fictitious time-domain amplitudes are com-
paratively small. As stated in Appendix C, the effect of the inverse
transform from the fictitious time domain to the diffusive frequency
domain is that refractions and guided events are favored over re-
flected and diffracted events. At frequencies below 1 Hz, the reflec-
tions and diffractions are suppressed by the damping term and the

Figure 11. Damped normalized shot gather for the
inline electric field. The frequency is 0.033 Hz.

Figure 10. Damped normalized shot gather for the
inline electric field. The frequency is 0.01 Hz.
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phase term in the inverse transform. For higher frequencies, it is the
damping term that suppresses reflections and diffractions relative to
the earlier arriving refraction and guided events.
If the transmitter is elevated high above the seabed compared

with the example given here, we may have a situation in which there
are no refracted or guided events at small offsets. The only events
are then the direct wave and precritical reflections. These types of
events would then determine the marine CSEM response at small
offsets. However, due to the large resistivity increase from the water
to top formation and to a potential thin resistive layer, the critical
angle for the onset of refracted events and guided events will be
relatively small. The model shown in Figure 4 has a top formation
resistivity of 1 ohm-m, and the critical angle is 34°. Suppose the
transmitter is towed close to the sea surface and hence is 2.0 km
above the seabed. The onset of refracted events in the seabed will
then be at an offset of 1.35 km. For a top formation resistivity of

2 ohm-m, the critical angle will be 23° and the onset of refracted
events in the seabed will then be at an offset of 860 m. It is clear that
intermediate and large offsets, that is, offsets greater than 1.5 km,
will be dominated by refracted and guided events also in the case of
a surface towed transmitter even if the water depth is as large as
2.0 km. Thus, data recorded in a marine CSEM survey will behave
similar to seismic refraction data.
The last observation is interesting when it comes to inversion

of marine CSEM data. Full-waveform inversion (FWI) of marine
CSEM data often shows remarkably good results, having the low-
frequency content in mind. We can understand this by comparing
the FWI of CSEM data with FWI of seismic data. Successful FWI
of seismic data depends on having large offsets so that refraction
type events are acquired. It is not uncommon to mute the later ar-
riving reflections. Low-frequency data are important in seismic FWI
because the cycle-skipping effect is small. Low-frequency data are

Figure 12. Damped normalized shot gather for the
inline electric field. Frequency is 0.1 Hz.

Figure 13. Damped normalized shot gather for the
inline electric field. The frequency is 0.333 Hz.
The traces at the −6 km and þ6 km offsets are
shown strongly amplified.
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not always easy to obtain in the marine seismic case because airgun
spectra are small for low frequencies. These properties are in place
for marine CSEM data. Large source-receiver offsets are the stan-
dard. The skin depth effect due to the earth’s conductivity forces us
to transmit signals in the low-frequency range. In addition, the
earth’s conductivity properties favor refracted and guided events
as the main contributions at intermediate and large offsets.
Interestingly, Virieux et al. (2012) propose to use a transform

equivalent to equation 13 for seismic data to modify the objective
function for FWI. The purpose is to mitigate the nonlinearity of the
seismic inverse problem. The approach is related to, but not iden-
tical to, the Laplace transform technique proposed by Shin and
Min (2006) as pointed out by Virieux et al. (2012). It is clear that
equation 13 applied to seismic data will favor early arrivals over late
arrivals due to the exponential damping term. This is a way to ex-
tract refractions and diving waves from the observed seismic data.

There is a second effect of the transform that may be beneficial for
FWI of seismic data. It is already noted that seismic refracted events
will experience a smoothing effect corresponding to an integration
of the outgoing waveform. I have here shown that refractions can be
enhanced relative to reflections and diffractions after the application
of the transform in equation 13. This additional effect of the trans-
form has effect also for transform frequencies that are so small that
the damping effect for late arrivals is of less importance. The trans-
form in equation 13 may be viewed as a filter for the seismic data
that suppresses reflected and diffracted arrivals compared with re-
fracted arrivals and diving waves.
Another question that comes naturally is whether diffusive

electromagnetic (EM) data can be transformed to the fictitious time
domain and processed with seismic processing software? As
pointed out by de Hoop (1996), the operation of going from the
wave domain to the diffusive domain is always stable. The reverse

Figure 14. Damped normalized shot gather for the
inline electric field. The frequency is 1.0 Hz. The
traces at the −6 km and þ6 km offsets are shown
strongly amplified.

Figure 15. Damped normalized shot gather for the
inline electric field. The frequency is 3.33 Hz. The
traces at the −6 km and þ6 km offsets are shown
strongly amplified.
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operation of going from the diffusive domain to the wave domain is
an ill-posed problem. It can be done for a few frequencies at a time
as discussed in Mittet (2010). This type of transform is necessary to
calculate the adjoint state for gradient-based inverse schemes if a
fictitious time-domain EM code is used for modeling. The problem
of going from the diffusive domain to the wave domain for a wide
frequency spectrum is still unsolved for noise-free synthetic data.
Even if this part of the problem is solved, there is an additional issue
with real data. The transform faces similar problems as Q compen-
sation in seismic data processing. The noise will blow up as the

frequency is increased. The answer to the question posed above
is negative as of today.

Calibration

In Figure 16, I compare two different methods for the simulation
of frequency-domain electric field responses from the resistivity
model in Figure 4. The black curves show the inline electric field
amplitude and phase. These solutions are obtained by applying the
transform in equation 13 to the electric field data displayed in

Figure 16. Amplitude and phase for the inline electric field. The black curves are for solutions using the fictitious wave-domain approach. The
green curves are for solutions directly in the diffusive frequency domain. (a) Amplitudes versus offset for 0.1 Hz with solid lines and 0.333 Hz
with dashed lines. (b) Phase versus offset for 0.1 Hz with solid lines and 0.333 Hz with dashed lines. (c) Amplitudes versus offset for 1.0 Hz
with solid lines and 3.33 Hz with dashed lines. (d) Phase versus offset for 1.0 Hz with solid lines and 3.33 Hz with dashed lines.
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Figure 7. The green curves also show the inline electric field ampli-
tude and phase. These solutions are obtained by a direct frequency-
domain solution of the diffusive field equation 7 as a linear equation
system. No transform to or from the fictitious time domain is in-
volved in this case. The solver used to generate the direct frequency-
domain results is largely based on Mulder (2006), who uses a
conjugate-gradient-type method in combination with a multigrid pre-
conditioner and a block Gauss-Seidel smoother to solve the system of
linear equations. The Gauss-Seidel smoother is required due to the
large null-space of the curl-curl operator in 3D. The results in

Figure 16 are for frequencies from 0.1 up to 3.33 Hz. The resulting
electric fields for the two simulation methods are close to identical
over all offsets and all frequencies.

CONCLUSIONS

The Maxwell equations in the quasistatic or diffusive limit can be
transformed to a wave equation. The propagation of the fields can
be analyzed in this transformed or fictitious time domain. Conclu-
sions with regards to the real field propagation must take into ac-

count the properties of the inverse transform
from the wave domain to the diffusive domain.
There are two effects in the inverse transform that
must be accounted for.
The first effect is that part of the inverse trans-

form is an exponential damping of late arrivals.
Thus, early arrivals in the wave domain are rel-
atively more important than late arrivals. This ef-
fect becomes more pronounced with increased
frequency. The recorded data in a marine CSEM
survey configuration will be dominated by the
first arrival if the frequency is sufficiently high.
For a subsurface with a typical background resis-
tivity of 1 ohm-m, this happens for frequencies
above approximately 1.0 Hz. First arrivals in
the wave domain are refractions if the resistivity
increases with depth. First arrivals can also be
guided events if thin resistive layers are present
in the subsurface.
The second effect is more subtle and is related

to the phase term in the inverse transform in com-
bination with waveform modifications for re-
fracted and guided events. Refracted and guided
events are smoothed compared with reflected and
diffracted events. The smoothing effect amounts
to an amplification of the low frequency part
of the spectra. The result is that refracted and
guided events make relatively large contributions
to the inverse transform from fictitious time to
frequency when compared with reflections and
diffractions. Thus, if refractions and reflections
are present with equal amplitude along the same
time trace, the inverse transform will give most
weight to the refraction. This effect comes in
addition to the damping of late arrivals, which
normally are reflections and diffractions. The
smoothing effect is most important for frequen-
cies up to 1.0 Hz. Above 1.0 Hz, the inverse
transform is dominated by the exponential damp-
ing term.
If the transmitter is close to the seabed, then

refractions will dominate even at very small off-
sets. If the transmitter is surface-towed, there will
be no refractions at small offsets and the CSEM
data at these offsets will be dominated by the
direct wave and the reflections. However, the re-
sistivity contrast in the seabed is large, and the
critical angle for the onset of refracted events
is typically less than 35°. Consequently, even in
the case of a surface-towed transmitter and a

Figure 18. Normalized shot gather for the vertical component of particle velocity for the
variable density case. The polarity is reversed.

Figure 17. Snapshots of the x-component and z-component of the particle velocity for
the variable density case.
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2000-m water depth, we will have refractions as first arrivals for
offsets above approximately 1500 m.
Concepts such as reflections, refractions, diffractions, and trans-

missions are valid for recorded events in a marine CSEM survey.
Due to the earth properties, the transmitter properties, and the
source/receiver configuration, we conclude that marine CSEM data
are dominated by refracted and potentially guided events. Typical
for marine CSEM data are significant field amplitudes for low
frequencies only, large source-receiver offsets, and a high content
of refraction events. These are attributes that are essential for the
success of seismic FWI and may explain the relative success of
FWI of marine CSEM data.

ACKNOWLEDGMENTS

I would like to thank my colleague S. de la Kethulle de Ryhove
for providing the simulation results from his direct frequency-
domain solver for the Maxwell equations. I also thank J. Roberts-
son, K. Wapenaar, and one anonymous reviewer for their fruitful
suggestions and comments. Finally, I thank EMGS ASA for
allowing the publication of this work.

APPENDIX A

ACOUSTIC GUIDING

During the review process for this paper, one of the reviewers, K.
Wapenaar, prompted me to take a closer look at acoustic guiding. In
particular, he pointed to a paper by Wapenaar et al. (2001) in which
a one-to-one correspondence between 2D EM wave equations and
2D acoustic wave equations is derived. We know that there is guid-
ing effects for 2D EMwaves in the transverse magnetic (TM) mode.
As a consequence, there has to be compliance and density models
that cause guiding effects in the 2D acoustics case. In particular,
Table 1 of Wapenaar et al. (2001) shows that the compliance κ must
be substituted for the magnetic permeability μ when we transform
from the 2D TM electromagnetic mode to the 2D acoustic mode.
Likewise, the density ρac must be substituted for the electric permit-
tivity ϵ, when we transform from the 2D TM electromagnetic mode
to the 2D acoustic mode. This already gives us a hint that acoustic
guiding in the form observed for the electromagnetic field is related
to density variations in acoustics.
It turns out that the guiding effect is present also for 3D acoustics,

but it will not happen for a constant density model as used in this
paper up to now. Let us first have a closer look at EM guiding. The
boundary conditions for the EM fields are obtained from the Max-
well equations. I assume a half-space model with a horizontal inter-
face. The integral form of Ampère’s law is by the application of
Stokes’ theorem:I

dl · H ¼ ∂t
Z

dA · Dþ
Z

dA · J; (A-1)

where A is a surface area and dl is a vector line element along the
contour of A. Here,D ¼ ϵE is the electric displacement. The surface
area A is assumed to straddle the interface and be of length lx or ly
and of height Δh. Taking the limit Δh → 0 under the assumption
that there are no free charges in the system results in the two hori-
zontal components of the magnetic field being continuous over the
boundary. The assumption of no free charges is valid because the

Maxwell wave equation is for a dielectric medium, which do not
permit any free charges. The integral form of Faraday’s law is by
the application of Stokes’ theorem:I

dl · E ¼ −∂t
Z

dA · B; (A-2)

where B ¼ μH is the magnetic flux density. By similar reasoning as
above, it can be deduced that the two horizontal components of the
electric field are continuous over the boundary. These four boun-
dary conditions are sufficient to determine the reflection and trans-
mission properties of the electromagnetic field at the interface.
However, the additional Maxwell equation,

∇D ¼ q; (A-3)

where q is the charge density, will determine the behavior of the
vertical electric component at the boundary. The integral form of
equation A-3 is by Gauss’ theoremI

dA · D ¼
Z

dVq ¼ Q ¼ 0; (A-4)

where V is the volume inside the closed surface A and Q is the total
amount of free charge. The volume V also straddles the boundary
and is V ¼ lxlyΔh. In the limit of Δh → 0, equation A-4 dictates
that the vertical component of the electric displacement is continu-
ous. Thus, if there is a jump in the electric permittivity, then there is
a compensating jump in the vertical electric field:

Ezð2Þ ¼
ϵð1Þ
ϵð2ÞEzð1Þ; (A-5)

where Ezð1Þ and ϵð1Þ are the values immediately above the inter-
face and Ezð2Þ and ϵð2Þ are the values immediately below the inter-
face. Equation 9, valid for the fictitious time-domain simulations,
tells us that a jump in the “fictitious time domain” electric permit-
tivity is proportional to a jump in the real-world conductivity. In
particular, if the conductivity is greatly reduced in a thin layer, then
the vertical electric field will compensate with a jump to a much
higher value within the thin layer. This is also apparent from
Figure 6b. The polarization is also favorable. The electromagnetic
field in the inline direction propagates horizontally within the wave-
guide with a nearly transverse (vertical) polarization. This contains
the essence of waveguide properties where the field is compara-
tively small outside the waveguide and acquires a large amplitude
within the waveguide itself and where the polarization properties of
the field within the waveguide are favorable.
The boundary conditions for the acoustic field can be obtained in

a similar manner as above. The integral form of the constitutive re-
lation is I

dA · v ¼ −∂t
Z

dVκP: (A-6)

The resulting boundary condition is that the vertical component
of the particle velocity vz is continuous over the boundary under
the assumption that the pressure P and the compliance κ are finite.
Newton’s second law, assuming that the boundary is at depth zb,
gives by integration in the z-direction
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Pðzb þ Δh∕2Þ − Pðzb − Δh∕2Þ ¼ −ρacðzbÞ∂tvzðzbÞΔh:
(A-7)

Taking the limit Δh → 0 dictates the continuity of the pressure over
the boundary. These two boundary conditions are sufficient to de-
termine the reflection and transmission properties of the acoustic
field at the interface in the acoustic case. However, we can also
derive how the two horizontal components of the particle velocity
behave over the boundary. Newton’s second law can be written as

∂tp ¼ −∇P; (A-8)

where p ¼ ρacv is the particle momentum density of the field.
Taking the curl of this equation results in

∂t∇ × p ¼ 0; (A-9)

which by Stokes’ theorem results inI
dl · p ¼ 0: (A-10)

Thus, the two horizontal components of the particle momentum
density must be continuous over the boundary. These two boundary
conditions have similar effects as the continuity of the vertical elec-
tric displacement over the boundary. We observe that if the density
makes a jump over the horizontal interface, then the horizontal par-
ticle velocities must also jump over the boundary to ensure continu-
ity of the horizontal particle momentum densities:

vxð2Þ¼
ρacð1Þ
ρacð2Þ

vxð1Þ and vyð2Þ¼
ρacð1Þ
ρacð2Þ

vyð1Þ. (A-11)

In particular, if the density is greatly reduced in a thin layer, then the
horizontal particle velocities will compensate with jumps to much
higher values within the thin layer. The polarization properties are
favorable also in the acoustic case. The acoustic field propagates
horizontally in the waveguide with longitudinal (horizontal) polari-
zation. Again, this contains the essence of waveguide properties
where the field is comparatively small outside the waveguide and
acquires a large amplitude within the waveguide itself and where the
polarization properties of the field within the waveguide are fa-
vorable.
For the acoustic model used in the main part of this paper, the

density is kept constant and the velocity model variations are due to
variations in compliance. The constant density approximation is a
common assumption for the simulation and processing of seismic
data because density variations in a sedimentary formation are be-
lieved to be relatively smaller than variations in elastic properties. In
the case of constant density, the pressure and all three components
of the particle velocity are continuous over the thin layer. This pre-
vents a large jump for any of the field components, and the field
polarization is not necessarily close to horizontal within the thin
layer because the field polarization in this case is continuous and
the polarization in the thin layer is locally the same as in the sur-
rounding formation. An abrupt change of polarization for the acous-
tic field is closely linked to an abrupt change in density. For the
electromagnetic field, the same type of amplitude gain and polarity
rotation happens when the electric permittivity or the conductivity is
reduced compared with the surrounding formation. The magnetic

permeability is close to that of the vacuum value except for ferro-
magnetic materials. It is common to use the vacuum value for
sedimentary rock formations. In principle, a reduction in the mag-
netic permeability for a thin layer could cause waveguiding in a
similar fashion as a reduction in electric permittivity. This would
be a diamagnetic effect. However, diamagnetic effects are known
to be weak, and such effects would never be observable in low-
frequency geophysical applications.
The 3D acoustic model most similar to the 3D EM model used

for the simulations in this paper is to keep the compliance constant
and allow the density to vary in equation 2. The compliance is kept
constant at the value for seawater. The density must then vary in
such a way that the velocity model in Figure 1 is realized. The
density in the thin layer becomes 5.21 kg∕m3 compared with
1000 kg∕m3 in the water layer. Such density variations are not geo-
physically realistic but can very well be studied in computer sim-
ulations.
Figure 17 shows snapshots at 0.69 s for the acoustic variable den-

sity simulation. The acoustic guiding effect is now present. There is
an obvious similarity with the EM simulation results displayed in
Figure 6. The polarity reversal on the vz component compared with
the Ex is in accordance with what Wapenaar et al. (2001) derive for
2D fields. For the example here, we have not performed a polarity
reversal on the source function as required in Wapenaar et al.
(2001). The result is that to compare with electromagnetic results,
we have to do a polarity reversal on vz instead of vx. Figure 18
shows a normalized shot gather of vz with the polarity reversed.
This shot gather can be compared with the normalized shot gather
for Ex in Figure 9. These shot gathers are in very good qualitative
agreement, and the acoustic guiding is evident.

APPENDIX B

DE HOOP’S CORRESPONDENCE PRINCIPLE

The relations necessary for the discussion in this paper are de-
rived in a rigorous manner by de Hoop (1996). The starting point
for de Hoop is equations 5 and 8 as given in this paper. Equation 24
in de Hoop (1996) gives the transformation from the fictitious, wave
time domain to the real, diffusive time domain. The description
given by de Hoop is complete and valid for electric and magnetic
fields with electric and magnetic sources. Here, I need the results for
the electric field due to an electric dipole source. According to de
Hoop (1996), the relation is

GEJ
ij ðx; tjxsÞ ¼

�Z
∞

0

dt 0WEJðt; t 0;ω0ÞG 0EJ
ij ðx; t 0jxsÞ

�
HðtÞ;
(B-1)

where HðtÞ is the Heaviside step function. Compared with equa-
tion 24 in de Hoop (1996), the following changes in notation have
been performed: The argument for fictitious time τ in de Hoop
(1996) is changed to t 0, and the scale parameter α in de Hoop
(1996) is changed to 2ω0. The Green’s tensor in the fictitious time
domain is here called G 0EJ

ij , and the Green’s tensor for the real time

domain is here called GEJ
ij . The transform kernel WEJ is defined by

equations 26 and 29 in de Hoop (1996) and is
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WEJðt; t 0;ω0Þ ¼ −
1

2ω0

∂t 0
�
1

2

ffiffiffiffiffiffiffiffi
2ω0

π

r
t 0

t3∕2
e−

2ω0 t
02

4t

�
: (B-2)

A Fourier transform of equation B-1 gives the diffusive response in
the frequency domain:

GEJ
ij ðx;ωjxsÞ ¼

Z
∞

−∞
dtGEJ

ij ðx; tjxsÞeiωt; (B-3)

which is

GEJ
ij ðx;ωjxsÞ¼

Z
∞

0

dt

�Z
∞

0

dt0WEJðt;t0;ω0ÞG0EJ
ij ðx;t0jxsÞ

�
eiωt:

(B-4)

I next add a small positive complex number to the frequency ω →
ωþ iϵ with ϵ positive and real and will later take the limit ϵ → 0þ.
With s ¼ ϵ − iω, I obtain

GEJ
ij ðx;ωjxsÞ ¼ −

1

2ω0

Z
∞

0

dt 0G 0EJ
ij ðx; t 0jxsÞ½∂t 0Lðt 0;ω0; sÞ�;

(B-5)

with

Lðt 0;ω0; sÞ ¼
Z

∞

0

dt

�
1

2

ffiffiffiffiffiffiffiffi
2ω0

π

r
t 0

t3∕2
e−

2ω0 t
02

4t

�
e−st: (B-6)

I introduce k ¼ ffiffiffiffiffiffiffiffi
2ω0

p
t 0 and obtain

Lðt 0;ω0; sÞ ¼
Z

∞

0

dt
1

2

kffiffiffi
π

p e−
k2
4t

t3∕2
e−st: (B-7)

The integral is given as equation 29.3.82 in Abramowitz and Stegun
(1970); thus,

Lðt 0;ω0; sÞ ¼ e−k
ffiffi
s

p
: (B-8)

The above integral is convergent as ϵ → 0þ given that we choose
the following roots:

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − iω

p
¼ p − iq;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ ω2

p
þ ϵ

�s
;

and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ ω2

p
− ϵ

�s
; (B-9)

which is
ffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffi
−iω

p ¼ ð1 − iÞ ffiffiffiffiffiffiffiffiffi
ω∕2

p
. The expression for L can

be written as

Lðt 0;ω0; sÞ ¼ Lðt 0;ω0;ωÞ ¼ e−
ffiffiffiffiffiffiffiffiffiffiffiffi
−2iωω0

p
t 0 : (B-10)

Equation B-5 now becomes

GEJ
ij ðx;ωjxsÞ ¼ −

1

2ω0

Z
∞

0

dt 0G 0EJ
ij ðx; t 0jxsÞ

×
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2iωω0

p
e−

ffiffiffiffiffiffiffiffiffiffiffiffi
−2iωω0

p
t 0
�

¼
ffiffiffiffiffiffiffiffiffi
−iω
2ω0

s Z
∞

0

dt 0G 0EJ
ij ðx; t 0jxsÞe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 :

(B-11)

The relation between equations B-11 and 13 is as follows:
Suppose the fictitious time-domain field in equation 13 is excited
with temporal and spatial Dirac distributions with source current
direction in the j-direction. It would then be appropriate to write
equation 13 as

Eijðx;ωjxsÞ ¼
Z

T

0

dt 0G 0EJ
ij ðx; t 0jxsÞe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 :

(B-12)

Equation 20 of Mittet (2010) can be written as

GEJ
ij ðx;ωjxsÞ ¼

Eijðx;ωjxsÞ
JTðωÞ ; (B-13)

with

JTðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2ω0

iω

r Z
T

0

dt 0J 0Tðt 0Þe− ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 : (B-14)

For J 0Tðt 0Þ ¼ δðt 0 − 0þÞ,

JTðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2ω0

iω

r
; (B-15)

and equations B-12, B-13, and B-15 give

GEJ
ij ðx;ωjxsÞ ¼

ffiffiffiffiffiffiffiffiffi
−iω
2ω0

s Z
T

0

dt 0G 0EJ
ij ðx; t 0jxsÞe−

ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0 ;

(B-16)

which is identical to the result in equation B-11 and validates the
use of equation 13 in the discussions in this paper.

APPENDIX C

ON TIME AND FREQUENCY TRANSFORMATIONS

There are two frequencies referred to in the discussions in this
paper. This may cause some confusion. Let E 0

i ðx; t 0Þ be an electric
field component in the fictitious time domain. This field can be de-
composed into its Fourier components E 0

i ðx;ω 0Þ:

E 0
i ðx;ω 0Þ ¼

Z
T

0

dt 0E 0
i ðx; t 0Þeiω 0t; (C-1)

where the angular frequency ω 0 is real. The inverse transform, as-
suming an angular Nyquist frequency ωN, is
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E 0
i ðx; t 0Þ ¼

1

2π

Z
ωN

−ωN

dω 0E 0
i ðx;ω 0Þe−iω 0t 0 : (C-2)

These two equations are used when the frequency content of the
fictitious time-domain signal is discussed.
On the other hand, the diffusive frequency-domain response is

Eiðx;ωÞ ¼
Z

T

0

dt 0E 0
i ðx; t 0Þeiωct 0 ; (C-3)

where ωc ¼ ð1þ iÞ ffiffiffiffiffiffiffiffiffi
ωω0

p ¼ ð1þ iÞωeff .
The relation between peak amplitude in the fictitious time

domain and the absolute value of the complex amplitude in the dif-
fusive frequency domain can be explained by using Gaussian wave-
forms. This is relevant because these are the types of waveforms
occurring in the electromagnetic wave simulations. Let Γðt 0Þ be
a Gaussian. The first-order derivative with respect to time is
Γ̇ðt 0Þ ¼ ∂t 0Γðt 0Þ, and the second-order derivative with respect to
time is Γ̈ðt 0Þ ¼ ∂2t 0Γðt 0Þ. The peak value of the waveforms are at
t 0 ¼ t 0peak. For the Gaussian, we have

Γðt 0Þ ¼
ffiffiffi
β

π

r
e−βðt 0−t0Þ2 ;

t 0peak ¼ t0;

and

jΓðt 0peakÞj ¼
ffiffiffi
β

π

r
: (C-4)

For the first-order derivative of the Gaussian, we have

Γ̇ðt 0Þ ¼ −
ffiffiffi
β

π

r
2βðt 0 − t0Þe−βðt 0−t0Þ2 ;

t 0peak ¼ t0 �
1ffiffiffiffiffi
2β

p ;

and

jΓ̇ðt 0peakÞj ¼
ffiffiffi
β

π

r ffiffiffiffiffi
2β

p
e−

1
2: (C-5)

For the second-order derivative of the Gaussian, we have

Γ̈ðt 0Þ ¼ −
ffiffiffi
β

π

r
2β½1 − 2βðt 0 − t0Þ2�e−βðt 0−t0Þ2 ;

t 0peak ¼ t0;

and

jΓ̈ðt 0peakÞj ¼
ffiffiffi
β

π

r
2β: (C-6)

The transform from fictitious time to diffusive frequency gives

ΓðωÞ ¼
Z

T

0

dt 0Γðt 0Þe− ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0

¼ e−
ffiffiffiffiffiffi
ωω0

p
t0ei

ffiffiffiffiffiffi
ωω0

p
t0e−i

ωω0
2β ;

jΓðωÞj ¼ e−
ffiffiffiffiffiffi
ωω0

p
t0 ; (C-7)

Γ̇ðωÞ ¼
Z

T

0

dt 0Γ̇ðt 0Þe− ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0

¼ ð1 − iÞ ffiffiffiffiffiffiffiffiffi
ωω0

p
e−

ffiffiffiffiffiffi
ωω0

p
t0ei

ffiffiffiffiffiffi
ωω0

p
t0e−i

ωω0
2β ;

jΓ̇ðωÞj ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ωω0

p
e−

ffiffiffiffiffiffi
ωω0

p
t0 ; (C-8)

and

Γ̈ðωÞ ¼
Z

T

0

dt 0Γ̈ðt 0Þe− ffiffiffiffiffiffi
ωω0

p
t 0ei

ffiffiffiffiffiffi
ωω0

p
t 0

¼ −2iωω0e−
ffiffiffiffiffiffi
ωω0

p
t0ei

ffiffiffiffiffiffi
ωω0

p
t0e−i

ωω0
2β ;

jΓ̈ðωÞj ¼ 2ωω0e−
ffiffiffiffiffiffi
ωω0

p
t0 : (C-9)

For the time domain, we can compare the peak amplitude of the
second-order derivative of the Gaussian to the peak amplitude of the
first-order derivative of the Gaussian:

RT ¼ jΓ̈ðt 0peakÞj
jΓ̇ðt 0peakÞj

¼
ffiffiffiffiffiffiffiffi
2βe

p
: (C-10)

For the frequency domain, we can compare the absolute value of the
complex amplitude of the second-order derivative of the Gaussian
to the absolute value of the complex amplitude of the first-order
derivative of the Gaussian:

RΩðωÞ ¼
jΓ̈ðωÞj
jΓ̇ðωÞj ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ωω0

p
: (C-11)

In the simulations performed for this paper, I have used β ¼ 1640,
which gives a maximum frequency of approximately 23 Hz (see
Mittet, 2010). Assuming that there are no additional scale factors
for the time-domain functions, I find that the peak amplitude of
the second-order derivative of the Gaussian is 95 times larger than
the peak amplitude of the first-order derivative of the Gaussian. The
value for the scale parameter is ω0 ¼ 2πf0 with f0 ¼ 0.7198 Hz.
For a frequency of f ¼ 0.333 Hz, I find, using equation C-11, that
the absolute value of the complex amplitude of the second-order
derivative of the Gaussian is only four times larger than the complex
amplitude of the first-order derivative of the Gaussian. Thus, a
waveform proportional to the first-order derivative of a Gaussian
can be a factor of 23 smaller than a waveform proportional to the
second-order derivative of a Gaussian and still give a comparable
contribution after the transform from the fictitious wave domain
to the diffusive frequency domain. If the transform frequency is
f ¼ 0.033 Hz, then the absolute value of the complex amplitude
of the second-order derivative of the Gaussian is 1.35 times larger
than the complex amplitude of the first-order derivative of the
Gaussian; in this case, a waveform proportional to the first-order
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derivative of a Gaussian can be a factor of 70 smaller than a wave-
form proportional to the second-order derivative of a Gaussian and
still give the same contribution after the transform from the fictitious
wave domain to the diffusive frequency domain. The effect of the
inverse transform from the fictitious time domain to the diffusive
frequency is that refractions and guided events are favored over re-
flected and diffracted events. At frequencies below 1 Hz, the reflec-
tions and diffractions are suppressed by the damping term and the
phase term in the inverse transform. For higher frequencies, it is the
damping term that suppresses reflections and diffractions relative to
the earlier arriving refractions and guided events.
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