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Summary 

 

In areas with high electric anisotropy and/or steep bedding 

dip angles, there are significant TTI anisotropy effects in 

marine CSEM data. We show how TTI medium 

parameterization can be incorporated in 3D Gauss-Newton 

inversion including the recovery of bedding azimuth and dip 

angles. The inversion regularization has terms to stabilize 

the solution of the normal equations, and to include a priori 

information preferring models with smooth bedding dip 

variations. We apply the TTI inversion to a field data set 

from the Gulf of Mexico and show that stratigraphy dip and 

azimuth in agreement with independent seismic information 

is recovered without any initial model structure. We also 

compare to a corresponding VTI inversion and observe that 

the TTI inversion result is fitting the data better.  

 

Introduction 

 

The electrical anisotropy and structural variation in 

sedimentary rock stratigraphies can give significant effects 

in electromagnetic measurements. This has been confirmed 

both from modeling studies (Davydycheva and Frenkel, 

2013) and field-data inversion studies considering marine 

controlled-source electromagnetic (CSEM) measurements 

(Hansen et al., 2018). The sensitivity to different resistivity 

components is due to subsurface electric currents flowing in 

all directions due to the dipole CSEM source and responses 

recorded in the 3D survey receiver grid. The anisotropy must 

therefore be properly represented when imaging and 

interpreting CSEM data.  

 

In areas with dipping formations, the often-used assumption 

of vertical transversely isotropic (VTI) anisotropy is no 

longer valid and one must consider the effect of tilted 

transverse isotropy (TTI). Hansen et al. (2016) showed that 

TTI anisotropy can be included in a CSEM inversion 

scheme, and that this is necessary to properly interpret the 

data. In that work, the implementation utilized a gradient-

based optimization which generally necessitates an initial 

model where the structure is well approximated in areas with 

strong TTI effects. The information about the structure can 

be derived from depth migrated seismic data, but such data 

might not always be readily available. An inversion scheme 

less dependent on the initial model would therefore be 

beneficial in this case. 

 

In this paper we show results from a Gauss-Newton 

inversion scheme (Nguyen et al., 2016) accounting for TTI 

anisotropy. As we will show, this scheme is able to recover 

the dip structure without any prior information in the initial 

model. This reduces the dependence on seismic horizons in 

an area to do TTI inversion. It will also simplify and speed 

up the work related to preparing the initial models.  

Furthermore, since CSEM can be used to determine bedding 

dip it can act as an independent way to determine 

stratigraphy structure, complementing seismic. 

 

Geologic settings that require TTI medium description 

 

A range of geologic environments and conditions can 

generate an electrically anisotropic medium where the 

conductivity will depend on the direction of the current flow.  

For hydrocarbon exploration, the clastic environments are of 

special interest. Deposition processes can lead to grains 

being oriented along defined directions, and the effect of 

gravity leads to layering. The electrical anisotropy may 

subsequently be reinforced by compaction and diagenesis 

after burial. The importance of accommodating electrical 

anisotropy to avoid artefacts in inversion (Jing et al., 2008) 

has already been recognized and has motivated the 

implementation of inversion codes supporting VTI medium 

description (Meju et al., 2018). 

 

While the VTI medium description may be adequate in 

environments where either or both the bedding dip and 

anisotropy are low, experience from interpreting field data 

show that the more complex TTI medium description is 

necessary in many settings. In the Barents Sea, Norway, the 

electrical anisotropy can be very large, with the ratio of bed-

normal relative to bed-parallel resistivity often above 10. 

With such high anisotropy, even small dip angles of e.g. 5∘ 

may generate a measurable TTI effect. Conversely, in 

regions with large bedding dip, for example fold and thrust 

belts in the Gulf of Mexico or close to allochthonous salt, 

significant TTI effects can be generated with even a modest 

electrical anisotropy ratio e.g. 3, which is commonly 

encountered in shales.  

 

3D CSEM inversion with TTI media 

 

We have developed a 3D CSEM inversion that incorporates 

TTI medium parameterization and forward modeling. The 

parameter fitting for the conductivity and bedding angle is 

done using a Gauss-Newton optimization scheme, which 

uses distributed memory systems to make it suitable for the 

large-scale problems of marine 3D CSEM. 

 

Forward modelling 

The forward modelling problem is to solve the Maxwell’s 

equations in the quasi-static limit, 

 

∇ × 𝐄 =  −μ0

𝜕𝐇

𝜕𝑡
, (1) 
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3D TTI CSEM Gauss-Newton inversion 

∇ × 𝐇 = 𝚺𝐄 + 𝐉, (2) 

 

where 𝐄 and 𝐇 are the electric and magnetic fields, 𝐉 is the 

source current density, and 𝚺 is the conductivity tensor of the 

medium. For a TTI medium, the conductivity tensor is 

diagonal in a coordinate system aligned with the beds, called 

the principal coordinates (Figure 1), and can be written as   

 

𝚺 = 𝑹T (

𝜎𝑝

𝜎𝑝

𝜎𝑛

) 𝑹 (3) 

 

where 𝜎𝑝(𝐫) and 𝜎𝑛(𝐫) are the bed-parallel and normal 

components of the conductivity and R is a rotation matrix,  

 

𝑹(𝛼, 𝛽) = (
cos 𝛼 cos 𝛽 sin 𝛼 cos 𝛽 − sin 𝛽

− sin 𝛼 cos 𝛼 0
cos 𝛼 sin 𝛽 sin 𝛼 sin 𝛽 cos 𝛽

) . (4) 

 

In this matrix, 𝛼(𝐫) and 𝛽(𝐫) are the spatially varying Euler 

angles that describe the local bedding azimuth and dip.  

We solve the forward problem using a finite-difference time 

domain (FDTD) scheme applied to equations (1) and (2). To 

speed up the calculation, these equations are transformed 

from the real-world domain, in which displacement currents 

are negligible, to a fictitious domain in which conduction 

currents are negligible (Maaø, 2007). The equations are 

discretized and solved on a Lebedev grid to accommodate 

the structure of 𝚺, similar to Davydycheva et al. (2003). 

 

Inverse problem 

The CSEM inverse problem is formulated as a least-squares 

optimization with the objective function, 

 

𝜀(𝐦) = 𝜀𝑑(𝐦) + 𝜆𝜎𝜀𝑟
𝜎(𝐦) + 𝜆(𝛼,𝛽)𝜀𝑟

(𝛼,𝛽)
(𝐦), (5) 

   

where 𝐦 = 𝒇 ([𝝈𝑛
T, 𝝈𝑝

T, 𝜶T, 𝜷T]
T

) is the vector of 

parameters to be fitted by the inversion on the discretized 

grid, and the subscripts d and r denote data and 

regularization  terms. The non-linear function 𝒇 ensures that 

parameters are within bounds for conductivity (Abubakar et 

al., 2009) and wrapped correctly for angles. The 

regularization contribution is split in a part 𝜀𝑟
𝜎 for the 

conductivity values and a part 𝜀𝑟
(𝛼,𝛽)

 for the Euler angles. 

The pre-factors 𝜆𝜎 and 𝜆(𝛼,𝛽) are scaling parameters for the 

regularization strength.  

 

The data term in the objective function is, 

 

𝜀𝑑(𝐦) =
1

𝑁𝑑
(Δ𝐝)†𝑾𝑑

𝑇𝑾𝒅(Δ𝐝) (6) 

 

where Δ𝐝 =  𝐝obs − 𝐝syn(𝐦) is a vector of the difference 

between the synthetic data for the given model m and the 

observed data. 𝑁𝑑 is the number of data points and  𝐖d  is a 

diagonal weighting matrix with the inverse of the data 

standard deviations along the diagonal (Hansen et al., 2018). 

The 𝜀𝑟
𝜎 term discretizes an approximate L-norm of gradients, 

 

𝜀𝑟
𝜎(𝐦𝜎) ≈

1

𝑉
∫‖𝑨∇′(𝐦𝜎 − 𝐦AP

𝜎 )‖𝐿𝑑𝑉 , (7) 

 

where 𝑉 = ∑ 𝑉𝑖𝑖  is the volume of the model summed over 

the parameter cell indices 𝑖, 𝐦𝜎 is the conductivity part of 

the parameter vector, the matrix 𝑨 contains directional 

weights for the gradient operator  ∇′= 𝑹∇ with respect to the 

local bedding-aligned coordinate system (Causse et al., 

2019), and 𝐦AP
𝜎  is an a priori model typically coinciding 

with the initial model for the inversion. By evaluating this 

regularization contribution in terms of the local bedding-

aligned gradient of the conductivity rather than the gradient 

in the model coordinate system, we ensure layer continuity 

and smoothness along the formation dip which is important 

for proper imaging of steeply dipping structure. 

 

Angle regularization 

In the TTI inversion, we introduce two additional angle 

optimization parameters 𝛼(𝐫) and 𝛽(𝐫). The angle 

regularization 𝜀𝑟
(𝛼,𝛽)

(𝐦) is composed of two contributions. 

The first term penalizes deviation from an a priori structure. 

This regularization contribution will stabilize the inversion 

by making the Hessian for the Gauss-Newton optimization 

non-singular and is, 

 

𝜀𝑟1
(𝛼,𝛽)

=
1

𝑉
Σ𝑖 ||𝑊𝑖

𝑅[𝑹𝑖(𝛼𝑖 , 𝛽𝑖) − 𝑹𝑖(𝛼𝑖
AP, 𝛽𝑖

AP)]||
2

𝑉𝑖 . (8) 

 

Here 𝑊𝑖
𝑅 is an appropriate weight for the cell with index 𝑖. 

The implementation in terms of the 𝑹 matrix elements 

 
Figure 1 Black lines: Model coordinate system (𝑥, 𝑦, 𝑧). 

Blue lines: Rotated, local coordinate system (𝑥′, 𝑦′, 𝑧′) 

oriented by the Euler angles 𝛼 and 𝛽. Dashed line: Bed 

structure aligned to principal coordinates (𝑥′, 𝑦′, 𝑧′). 
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3D TTI CSEM Gauss-Newton inversion 

eliminates a model null-space due to 𝑛𝜋 ambiguities of the 

angles. As for the conductivity values, the 𝛼𝑖
AP and 𝛽𝑖

AP a 

priori angle distributions typically correspond to the initial 

model bedding dip.  
 

A second angle regularization term called the minimum 

angle gradient is included to prefer models with smooth 

bedding dip variations and as few abrupt angle changes as 

required by the data. This is achieved by minimizing the L2 

norm of the spatial derivatives of the bedding-normal vector,  
 

𝐧(𝛼, 𝛽) = [

cos 𝛼 sin 𝛽
sin 𝛼 sin 𝛽

cos 𝛽
] . (9) 

 

The regularization contribution is calculated as 
 

𝜀𝑟2
(𝛼,𝛽)

=
1

𝑉
Σ𝑖 (||𝑊𝑖

𝑛𝑥𝜕𝑥𝐧𝑖||
2

+ ||𝑊𝑖
𝑛𝑦

𝜕𝑦𝐧𝑖||
2

+ ||𝑊𝑖
𝑛𝑧𝜕𝑧𝐧𝑖||

2
) 𝑉𝑖 , (10)

 

 

where the 𝑊𝑖
𝑛(𝑥,𝑦,𝑧)

 pre-factors give an appropriate weight 

to each parameter cell and can also control different 

penalization to angle variation in the different directions. We 

have found that this regularization term gives good 

flexibility to limit undesired variation while also offering 

convenient computational properties. 
 

Inversion update algorithm 

The objective function minimization is achieved using a 

Gauss-Newton algorithm (Nguyen et.al. 2016). A TTI 

inversion approach utilizing the L-BFGS-B algorithm (Zhu 

et al., 1997) to estimate parameter update based on gradients 

was described by Hansen et al. (2018, 2016). The Jacobian 

elements for the bedding-aligned conductivities and the 

Euler angles are determined in terms of the 𝚺 elements by 

applying the chain rule and the matrix 𝑹. The Gauss-Newton 

approach used by the inversion described here achieves a 

better Hessian matrix estimation. One advantage of this 

higher order model update algorithm is the ability to 

effectively compute parameter updates in model domains 

with low sensitivity. Further, this algorithm is more robust 

with respect to the choice of the initial model. Therefore, the 

inversion algorithm described in this paper can be deployed 

to recover structure in complicated environments and does 

not require seismic information to constrain the initial model 

bedding dip. As we will demonstrate, the recovered structure 

models may even be used as independent structure 

information to interpret in conjunction with seismic.   
 

Field data inversion example 
 

We apply the described inversion scheme to a field data set 

from the Gulf of Mexico. The survey data used in the 

inversion includes horizontal electric field measurements 

from 184 receivers spaced 1.5 km apart, and 24 source 

towlines. We included the frequencies 0.156 Hz, 0.469 Hz 

and 0.781 Hz. Data points with source-receiver offset up to 

13 km were included in the optimization.  

 

We have carried out both VTI and TTI inversion so that we 

can compare the results in terms of geological feasibility and 

data fit. In the VTI inversion, the dip angles are constant at 

0∘ in agreement with the medium representation. The 

resistivity components from VTI inversion is shown in 

Figure 2. The result of the TTI inversion, where also the 𝛼, 𝛽 

angles are recovered, is shown in Figure 3. Both inversions 

were started from an initial half-space model with 

vertical/normal resistivity 1.25 Ωm and horizontal/parallel 

resistivity 1.0 Ωm. For the TTI inversion the initial values 

for the 𝛼 and 𝛽 values were both 0∘.  

 

There are noticeable differences between both the values and 

structure of the subsurface resistivity models resulting from 

the VTI and the TTI inversions. The TTI inversion recovers 

a shallow layer with normal resistivity about 1-1.2 Ωm, and 

an increased resistivity ≈ 5 Ωm starting around 1500 m 

below the mudline. This transition follows the seismic 

mapped stratigraphy closely, which reinforces the 

plausibility of such structure. The VTI inversion shows 

several high resistive, localized anomalies at the slopes of 

the seismic mapped structures, with resistivities up to 

30 Ωm. Such a systematic pattern of localized resistivity 

anomalies correlating with structure in both the normal and 

the horizontal resistivity does not seem very reasonable, and 

we interpret that these as imaging artefacts resulting from the 

invalid VTI medium assumption. These artefacts could have 

been misinterpreted as hydrocarbon-charged traps but are 

not present in the TTI result which achieves a better data fit.  

 

A different section from the same data set was shown by 

Hansen et al. (2018), where the gradient-based optimization 

scheme was utilized. In that application, it was necessary to 

provide the inversion with a realistic initial model to achieve 

a good data fit. The initial model resistivity variation 

incorporated a linear depth increase following the main 

features of the seismic mapped stratigraphy, and the angle 

values for the TTI dip and azimuth model were estimated 

from interpreted seismic depth horizons for the area. The dip 

angles in the initial model were up to 50∘, and only minor 

changes to these angles were obtained in the inversion.  

 

Using our current TTI Gauss-Newton inversion scheme, we 

achieve similar results when starting from a simple half-

space model with no structure (dip angle 0∘), which 

significantly simplifies the processes of setting up the 

inversion.  The good agreement between the inversion result 

and the seismic interpreted structure (Figure 3) also 

demonstrates how the CSEM data can independently 

determine structure to corroborate seismic interpretation. 
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3D TTI CSEM Gauss-Newton inversion 

 

Conclusions 

 

We have implemented a 3D Gauss-Newton inversion 

scheme, which takes TTI anisotropy fully into account. To 

stabilize the solution of the normal equations and avoid 

artefacts in the recovered angle parameters, regularization of 

the dip and azimuth angles is applied. 

 

Unlike previously published gradient-based inversion 

schemes with TTI medium description, the inversion can 

update the bedding azimuth and dip angle from an initial 

model containing no information on the structure. This 

enables the use of the inversion in areas with little or no 

reliable structural a priori information.  

 

The described inversion scheme has been applied to a field 

data set from the Gulf of Mexico. The inversion model 

results show plausible structural updates for the TTI 

inversion but unrealistic localized anomalies for the VTI 

inversion. The TTI inversion also obtains a much better data 

fit than the corresponding VTI inversion.  
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        (a)                                                                                                (b)  

     
Figure 2: 2D section through the resulting vertical (a) and horizontal 3D resistivity model (b) for the VTI reference inversion. 

The overall data fit obtained for this inversion was 1.75, obtained after 23 Gauss-Newton iterations. The small white triangles 

indicate the position of receivers. The black line is a horizon obtained from seismic, which was not used in the inversion.  

 

        (a)                                                                                                (b) 

     
        (c)                                                                                                (d) 

   
 

Figure 3: 2D section through the resulting normal (a) and parallel 3D resistivity model (b), azimuth angle 𝛼 (c) and dip angle 

𝛽 (d) from the TTI inversion. The data fit for this model is 1.35, so this model is describing the data better than the model 

obtained from the VTI inversion, and convergence was achieved after 22 Gauss-Newton iteration steps. The 𝛽 angles are close 

to the original value of 0 in the deep part of the model due to limited sensitivity, and consequently there are no sensitivity to 

the 𝛼 angles. In the shallow, less resistive zone, the anisotropy factor is low (varying from 1.0 to 1.4), which gives less sensitivity 

to the orientation angles. This explains the limited update in beta angles for this depth range.  
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