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S U M M A R Y
We present a rigorous method for interpolation of electric and magnetic fields close to an
interface with a conductivity contrast. The method takes into account not only a well-known
discontinuity in the normal electric field, but also discontinuity in all the normal deriva-
tives of electric and magnetic tangential fields. The proposed method is applied to marine
3-D controlled-source electromagnetic modelling (CSEM) where sources and receivers are
located close to the seafloor separating conductive seawater and resistive formation. For
the finite-difference scheme based on the Yee grid, the new interpolation is demonstrated to
be much more accurate than alternative methods (interpolation using nodes on one side of the
interface or interpolation using nodes on both sides, but ignoring the derivative jumps). The
rigorous interpolation can handle arbitrary orientation of interface with respect to the grid,
which is demonstrated on a marine CSEM example with a dipping seafloor. The interpolation
coefficients are computed by minimizing a misfit between values at the nearest nodes and
linear expansions of the continuous field components in the coordinate system aligned with
the interface. The proposed interpolation operators can handle either uniform or non-uniform
grids and can be applied to interpolation for both sources and receivers.

Key words: Numerical solutions; Numerical approximations and analysis; Electrical
properties; Electromagnetic theory; Marine electromagnetics.

1 I N T RO D U C T I O N

A number of electromagnetic (EM) methods for geophysical ex-
ploration use data from receivers located at the seafloor in order
to extract information about the resistivity distribution in the sub-
surface. They include the marine controlled-source electromagnetic
(CSEM) method where EM fields in the earth are generated by a
powerful current source typically towed just above the seafloor, as
well as marine magnetotelluric (MT) method that uses the natural
EM radiation. One of the main application areas for these methods
today is the hydrocarbon exploration because resistive hydrocar-
bon reservoirs often show up as anomalies in CSEM data (see e.g.
Constable 2010; Hesthammer et al. 2010; Alcocer et al. 2013).

A major challenge for accurate modelling of EM data recorded by
seafloor receivers is a sharp conductivity contrast between the con-
ductive sea water and resistive formation. This conductivity jump
leads to discontinuities in the EM fields at the interface. Namely,
there appears a well-known discontinuity in the normal electric field,
and an often overlooked discontinuity in the normal derivatives of
tangential electric and magnetic fields. The latter is of primary im-
portance for CSEM and MT since both methods are based mainly
on measurements of the tangential components. Appropriate han-
dling of these discontinuities is a prerequisite for an accurate 3-D
EM modelling.

There exist three main approaches for modelling of EM re-
sponses: finite-difference/finite-volume, finite-element and integral
equations schemes (see Avdeev 2005; Börner 2010) for reviews. In
this work, we will focus on the finite-difference method—the most
straightforward for discretization of the Maxwell equations and at
the same time one of the most vulnerable to inaccurate handling of
interfaces.

Proper account of field discontinuities at interfaces is important
for both: (i) discretizing derivatives in the Maxwell equations on
the finite-difference grid and (ii) performing interpolation between
the grid nodes and the positions of sources and receivers. Some
accurate formulations of finite-difference operators in 3-D in the
presence of interfaces non-conforming to the modelling grid can
be found, for example in Bauer et al. (2011) and Nadobny et al.
(2003). In this work we focus on the interpolation problem where,
as demonstrated below, discontinuities at interfaces may lead to
even bigger inaccuracies. We shall consider an interface between
two media with different conductivities, but our results can be eas-
ily generalized also to an interface between media with different
dielectric permittivities.

Interpolation of electric and magnetic fields is needed whenever
nodes of the finite-difference grid do not coincide with exact posi-
tions of the modelled sources and receivers. This is usually the case
for measurements done with seafloor receivers since the seafloor

C© The Authors 2014. Published by Oxford University Press on behalf of the Royal Astronomical Society. 745

 by guest on D
ecem

ber 15, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:dshantsev@emgs.com
http://gji.oxfordjournals.org/


746 D. V. Shantsev and F. A. Maaø

cannot be ideally flat and hence does not conform to the grid. More-
over, the staggered Yee grid often used for EM modelling places
different field components at different nodes (see e.g. Taflove &
Hagness 2005) while a CSEM receiver measures all of them at the
same location. Hence, in order to find all components at a desired
recording position, one always needs to interpolate the field values
computed at the nearby nodes. Similarly, the interpolation is needed
for the CSEM source whose trajectory through the water does not
necessarily fit the grid nodes either. Smooth interpolation operators,
such as, for example trilinear interpolation, do a reasonably good
job as long as the conductivity varies slowly close to the interpola-
tion site. However, near sharp conductivity contrasts, for example
near the seafloor, such simple approaches are too inaccurate.

One common method to improve the interpolation accuracy
is to interpolate within one medium only. Since EM receivers
deployed at the seabed are located in the water, one can inter-
polate using only nodes in the water (see e.g. Abubakar et al.
2008). There exists a more powerful method—the essentially non-
oscillatory interpolation—where the interpolation stencil is chosen
adaptively, by minimizing oscillations in the interpolation poly-
nomial (Wirianto et al. 2011). In the case of an interface, it will
also choose only nodes within one medium since they represent
the smoothest part of the function. Even though these approaches
avoid the discontinuity issue, it comes at a cost of asymmetric in-
terpolation stencil. The asymmetry is extreme for receiver located
exactly at the seafloor: then all interpolation nodes lie higher than
the receiver, i.e. interpolation is replaced by extrapolation that is
inherently less accurate.

In order to use interpolation nodes on both sides of the seafloor,
one should interpolate the continuous normal current density instead
of discontinuous normal electric field. This approach is discussed
in detail in Streich (2009) where it is also emphasized that only the
secondary fields should be interpolated if the primary fields can be
computed explicitly at the recording position. However, even though
the normal current density is continuous, its derivative is not. The
same is true for the tangential electric and magnetic fields: they also
have a discontinuity in the normal derivative, in other words, their
profile across the interface has a sharp bend. Disregarding this bend
leads to interpolation errors.

In this work, we propose a more fundamental solution to the
interpolation problem that overcomes all the above mentioned dif-
ficulties. We ‘directly compute’ the jumps of field derivatives at
the interface using the known conductivity values on both sides of
the interface. The derivative jumps are then explicitly taken into
account when performing the interpolation. The proposed rigorous
interpolation allows improvement in the accuracy compared to the
existing schemes because (i) it uses nodes on both sides of the in-
terface, (ii) it takes into account discontinuity of both the normal
electric field and derivatives of the tangential fields and (iii) it uti-
lizes the available information about the conductivity contrast at the
interface.

We pay special attention to the important practical case of in-
terface tilted with respect to the modelling grid. We describe an
interpolation scheme that properly handles all boundary conditions
at such an interface and show how the derivative discontinuities can
be taken into account in that case.

Note that the CPU cost of interpolation is orders of magnitudes
smaller than the cost of computing fields at the grid nodes by solv-
ing the Maxwell equations. Therefore one should always aim at
using the most accurate interpolation approach. Another reason for
increasingly high requirements to the accuracy of interpolation and
forward CSEM modelling in general is a fast progress in the CSEM

acquisition equipment over the past years. Indeed, as the power of
the source increases, while the noise in source and receiver compo-
nents gets smaller (Barker et al. 2012), the CSEM method becomes
capable of detecting targets with relative response of only a few
per cent (Roth et al. 2013) or even resolving spatial variations of
hydrocarbon saturation within a given oil reservoir (Morten et al.
2012).

The paper is divided into three main sections. First, we prove
the concept on a simple case—a horizontal interface aligned with
the grid. We provide expressions for the derivative jumps, show
how they impact the interpolation coefficients and demonstrate im-
provement in the interpolation accuracy for two CSEM examples.
Then we proceed to a general case of interface tilted with respect to
the grid, present the interpolation framework, show how derivative
jumps can be incorporated there and finish with numerical CSEM
results for a dipping seafloor case. At the end, we provide discussion
and end up with a conclusion.

2 H O R I Z O N TA L I N T E R FA C E

2.1 Derivative jumps

The Maxwell equations without sources, in a non-magnetic medium
and with negligible displacement current read

μ0Ḣ = −∇ × E

σE = ∇ × H. (1)

Here μ0 is the magnetic permeability in a vacuum, while E and
H are the electric and magnetic fields, respectively. The electric
conductivity tensor σ is assumed to be diagonal, that is, we allow
for triaxial anisotropy.

Let us consider a horizontal interface—parallel to the (x, y)
plane—between two media with conductivities σ 1 and σ 2. The
boundary conditions require that the normal electric field has a
jump at the interface since σ z1Ez1 = σ z2Ez2 ≡ Jz , where Jz denotes
the vertical current density. At the same time, the tangential electric
and magnetic fields, Ex, Ey, Hx and Hy, are continuous across the
interface. Let us now have a closer look at how their derivatives
behave.

Since Hy is continuous, its time derivative, Ḣy = ∂ Ex/∂z −
∂ Ez/∂x should also be continuous. On the other hand, Ez has a
jump across the interface and correspondingly ∂Ez/∂x also has a
jump. It must be compensated by a similar jump in ∂Ex/∂z, namely,

∂ Ex2

∂z
− ∂ Ex1

∂z
=

(
1

σz2
− 1

σz1

)
∂ Jz

∂x
. (2)

Here we have disregarded terms proportional to ∂σ z/∂x, that is
we have assumed that the conductivity jump across the interface is
much larger than variation of conductivity along the interface over
a characteristic distance used to evaluate derivatives ∂/∂x, that is
over a size of grid cell. This equation tells us that even though the
tangential field Ex is continuous across the interface, its derivative,
∂Ex/∂z, experiences a jump. The jump is proportional to the jump
of normal resistivities over the interface, and also proportional to
the tangential derivative of the normal current density, ∂Jz/∂x.

Similar results can be obtained also for the y component of elec-
tric field. From the continuity of (∂Ez/∂y − ∂Ey/∂z), one finds that
the jump of the derivative ∂Ey/∂z is given as,

∂ Ey2

∂z
− ∂ Ey1

∂z
=

(
1

σz2
− 1

σz1

)
∂ Jz

∂y
. (3)
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Taking into account this kind of jumps in the interpolation scheme
is the central point of this paper.

The x projection of the Ampere’s law (1) reads: σ xEx = ∂Hz/∂y
− ∂Hy/∂z. Here Hz and hence ∂Hz/∂y are continuous, therefore
a jump in σ xEx across the interface must be equal and opposite in
sign to the jump in ∂Hy/∂z. A similar consideration can be applied
to the y projection of eq. (1), which gives us the two following
conditions:

∂ Hy2

∂z
− ∂ Hy1

∂z
= (σx1 − σx2) Ex

∂ Hx2

∂z
− ∂ Hx1

∂z
= −(σy1 − σy2)Ey . (4)

We see that derivatives of the tangential magnetic fields are also
discontinuous. Their jump is proportional to the jump of conduc-
tivities over the interface and also to the tangential electric field at
the interface.

Since the normal electric field is discontinuous across the in-
terface, it is quite common to interpolate the continuous normal
current density Jz instead, and then evaluate the field as Ez = Jz/σ z .
A more careful analysis shows however that the derivative ∂Jz/∂z
has a jump across the interface. Indeed, in the absence of charges,
divE = 0, and hence ∂Ez/∂z = −∂Ex/∂x − ∂Ey/∂y. Obviously,
∂Ex/∂x and ∂Ey/∂y are continuous across the interface, and so is
∂Ez/∂z. It means that ∂Jz/∂z is discontinuous, namely,

σz1
∂ Jz2

∂z
= σz2

∂ Jz1

∂z
. (5)

We have thus seen that all continuous quantities that can be used
for interpolation on both sides of the interface: the tangential fields
Ex, Ey, Hx and Hy as well as the normal current density, Jz , have
discontinuity in their z derivatives. The only field component that
has smooth derivatives over the interface is the normal magnetic
field, Hz ,—but only as long as there is no discontinuity in magnetic
permeability.

Note also that the derivative jump have slightly different mathe-
matical expressions in the formulas above. For the tangential fields
the jump conditions given by eqs (2), (3) and (4) define the differ-
ence’ between the derivatives at the two sides of the interface. By
contrast, for the normal current density Jn, the jump condition (5)
defines the ratio of the derivatives.

2.2 CSEM example

Fig. 1 shows an example of field profile across the seafloor where
the derivative discontinuity is seen very clearly. Here we consider a
simple CSEM model consisting of air, a water layer of 2050 m and a
half-space formation with resistivity of 1 �m. Fields are generated
by a harmonic horizontal electric dipole with dipole moment of
1 Am at the frequency of 1 Hz placed 50 m above the seafloor.
The inline electric field Ex is recorded at 4 km horizontal offset
from the source. The dashed line shows the field profile |E true

x |
along the vertical z axis obtained using the semi-analytical solution
from Løseth & Ursin (2007). The profile exhibits a sharp bend
exactly the seafloor, which means that the field derivative over z
is discontinuous. The observed jump of the derivative, ∂Ex/∂z, is
in agreement with eq. (2) and proportional to the difference of
formation and seawater resistivities.

The same CSEM problem has been solved using a 3-D finite-
difference time-domain modelling code described in Maaø (2007)
and Mittet (2010). The magnitude of inline field was computed
at the nodes of the Yee grid that are spaced by 100 m from each

Figure 1. Magnitude of inline electric field as a function of the vertical coor-
dinate z experiences a sharp bend at the seafloor caused by the conductivity
jump. Circles indicate field values computed at the nodes of modelling grid,
100 m apart from each other. Linear interpolation between the grid nodes
obviously fails to reproduce the correct field profile. However the new in-
terpolation fits the correct field behaviour very accurately because it takes
into account the derivative discontinuity at the seafloor.

other. The computed values are indicated as circles in Fig. 1. They
match almost perfectly the semi-analytical solution shown by the
the dashed line. To evaluate field values between the nodes, we first
use a linear interpolation (blue line). It gives satisfactory results
for most locations, however fails at the water—formation interface
where the field derivative dEx/dz is discontinuous. For a receiver
located exactly at the seafloor the error in the interpolated Ex is
larger than 10 per cent.

Much better accuracy can be achieved by an improved interpo-
lation scheme (red curve) where the jump in the derivative dEx/dz
is taken into account. The interpolated field profile is therefore not
just a straight line between values at the nodes: it is now given by
two line segments with different slopes in the water and in the for-
mation. The difference in the slopes is given by the jump of dEx/dz
which is explicitly computed using eq. (2). In this way one obtains
an excellent fit to the true profile of Ex(z).

2.3 Interpolation coefficients

Here we shall give a very simple example showing how the inter-
polation coefficients can be computed if one wishes to take into
account a discontinuity in the derivative of the interpolated func-
tion. We still consider a horizontal interface in the (x, y) plane and
assume that it is aligned with the rectilinear grid used to discretize
the Maxwell equations. In this configuration the 3-D interpolation
coefficients can be obtained by multiplication of 1-D interpolation
coefficients along x, y and z. In other words, one can write down
the interpolated function, for example Ex, at the receiver location
(x0, y0, z0) as

Ex (x0, y0, z0) =
∑

i

∑
j

∑
k

cx (i)cy( j)cz(k)Ei, j,k
x , (6)

where Ei, j,k
x is the known values at the grid nodes specified by

three indices i, j, k referring to x, y and z, respectively. The sum
runs over relevant indices only, for example, in the popular trilinear
interpolation scheme it includes just two values for i, j and k, so that
the interpolation stencil covers the eight nearest nodes around the
receiver. When the interface is misaligned with the grid, splitting the
3-D interpolation coefficient c(i, j, k) into the product cx(i)cy(j)cz(k)
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Figure 2. Slice of the Yee grid in the (x, z) plane showing positions of
Ex and Ez nodes. The triangle marks the receiver position where the Ex

component needs to be interpolated. Interpolation taking into account the
derivative jump at the seafloor will use not only values of the two nearest Ex

nodes, but also values at the Ez nodes. Interpolation coefficients with and
without the derivative jump are given in eqs (12) and (9), respectively.

is not possible, and the full derivation for this general case is given in
Section 3. The horizontal interface causes derivative discontinuity in
the vertical direction only, but it does not affect smooth behaviour
of field components along x and y. Therefore, one may use any
conventional scheme to find the interpolation coefficients cx and cy,
and only computation of cz needs to be modified in such a way that
cz will become dependent on the conductivity and the vertical field
component, Ei, j,k

z .
Let us first find the interpolation coefficients in the absence of

interface. The conventional linear interpolation is then based on the
linear expansion for Ex(z):

Ex (z) = Ex (z0) + ∂ Ex

∂z
(z − z0). (7)

It contains two unknowns, Ex(z0) and ∂Ex/∂z, that can be deter-
mined by substituting here the coordinates zk and zk+1 of the two
nearest Ex nodes. The interpolated field at receiver is then immedi-
ately obtained as

Ex (x0, y0, z0) =
∑

i

∑
j

cx (i)cy( j)

×
[

zk+1 − z0

zk+1 − zk
Ei, j,k

x + z0 − zk

zk+1 − zk
Ei, j,k+1

x

]
. (8)

Let us now consider a very simple case depicted in Fig. 2 which
shows a slice of the Yee grid in the (x, z) plane that contains Ex and
Ez nodes. The receiver is located exactly in the middle between two
Ex nodes: one above and one below it , that is has the same x and
y coordinates as the two Ex nodes. It means that no interpolation
is required in x and y, hence, the sums over i and j in the above
expression disappear, while both interpolation coefficients in z equal
1/2. It leads to the very intuitive result that the interpolated field at
receiver is a simple average of the fields at the node above and the
node below,

Ex (x0, y0, z0) = Ei, j,k
x + Ei, j,k+1

x

2
. (9)

In the presence of interface, the expansion (7) is not valid anymore
since the derivative ∂Ex/∂z has different values in the two media.
If we denote its value in medium 1 as ∂Ex1/∂z, then the updated

linear expansion can be written down using eq. (2) as

Ex (z) =

Ex (z∗) +

⎧⎪⎪⎨
⎪⎪⎩

∂ Ex1

∂z
(z − z∗) , z ∈ �1

[
∂ Ex1

∂z
+

(
1

σz2
− 1

σz1

)
∂ Jz

∂x

]
(z − z∗) , z ∈ �2,

(10)

where z∗ denotes the position of interface separating medium 1
(�1) and medium 2 (�2) . The derivative ∂Jz/∂x should be taken
at the location (x0, y0, z∗), that is, at the projection of receiver to
the interface. By substituting here coordinates zk and zk + 1 of the
two nearest nodes, we obtain a system of two equations that can be
solved to find the two unknowns: Ex(z∗) and Ex1/∂z. Then the field
at the receiver position is immediately found from eq. (10) as

Ex (x0, y0, z0) =
∑

i

∑
j

cx (i)cy( j)

×
[

zk+1 − z0

zk+1 − zk
Ei, j,k

x + z0 − zk

zk+1 − zk
Ei, j,k+1

x

− (zk+1 − z∗)(z0 − zk)

zk+1 − zk

(
1

σz2
− 1

σz1

)
∂ Jz

∂x

]
, (11)

where we have assumed that the receiver is located in medium 1.
Note that field at the interface Ex(z∗) is given by the same expres-
sion (11) if one replaces z0 by z∗. It is interesting to compare this
expression with a similar expression (8) in the absence of interface.
We notice that they are identical except that now there appears an
additional term which is proportional to the derivative jump at the
interface. This is a very practical result since it allows one to reuse
the standard interpolation expressions and take into account the
presence of interface by simply adding a new term.

Let us now come back to the simple case shown in Fig. 2. Here the
derivative ∂Jz/∂x at (x0, y0, z∗) can be evaluated using the centred
finite-difference as, ∂ Jz/∂x = (J i+1, j,k

z − J i, j,k
z )/�x , where �x is

the Yee cell size in the x direction. Eq. (11) for the interpolated Ex

at the receiver then reduces to

Ex (x0, y0, z0) = Ei, j,k
x + Ei, j,k+1

x

2

− 1

4

�z

�x

(
1

σz2
− 1

σz1

) (
J i+1, j,k

z − J i, j,k
z

)
. (12)

Again we see that this expression contains the same terms as in the
absence of interface, eq. (9), plus one more term proportional to the
derivative jump at the interface.

Let us now get a feeling of the magnitude of the new interpola-
tion coefficients by substituting typical conductivity values: σ z1 =
4 S m−1 for the water and σ z2 = 1 S m−1 for the top formation. The
relation between the normal current density J i, j,k

z and the normal
electric field Ei, j,k

z involves the effective conductivity assigned to
the Ei, j,k

z node located exactly at the seafloor. In a finite-volume
scheme it should be obtained by harmonic averaging of water and
formation conductivities, that is, σ i, j,k

z = 2σz1σz2/(σz1 + σz2) that
gives 1.6 S m−1. Finally, we assume equal cell sizes in x and z di-
rections, �x = �z and then eq. (12) becomes,

Ex (x0, y0, z0) = 0.5
(
Ei, j,k

x + Ei, j,k+1
x

) − 0.3
(
Ei+1, j,k

z − Ei, j,k
z

)
,

(13)

where the first term represents the standard linear interpolation,
while the term with coefficient 0.3 accounts for the derivative jump
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Interpolation near tilted interfaces 749

Figure 3. Error in the inline electric field recorded at the seafloor as a
function of the cell size in z direction for a half-space CSEM model described
in the text. The conventional linear interpolation (blue) has a first-order error
which is removed when using the proposed rigorous interpolation (red).

at the interface. Note that the coefficients for the two terms are of
the same order. The additional term due to the derivative jump is
smaller only because the two Ez nodes enter the expression with
the opposite signs and there will be a considerable cancellation
since fields at the neighbouring nodes should not differ too much.
Nevertheless, the above expression implies that the new term is
quite important and ignoring it will lead to the first-order error in
the interpolated field.

2.4 Numerical examples

We present results showing the effect of interpolation in two ex-
treme cases of marine CSEM: infinite water depth and shallow
water. In Fig. 3, we show how the interpolation error depends on
the grid cell size for an infinite water depth. We choose the sim-
plest possible CSEM example: a half-space water and half-space
formation with resistivities of 0.3125 and 1 �m, respectively. The
source is a harmonic horizontal electric dipole with dipole moment
of 1 Am at the frequency of 1 Hz placed slightly above the seafloor.
The inline electric field Ex at the seafloor has been computed using
3-D finite-difference time-domain code described by Maaø (2007)
and Mittet (2010), and then compared to the semi-analytical solu-
tion, E true

x , given in Løseth & Ursin (2007). The error of the 3-D
code is characterized by the relative difference, |Ex − E true

x |/|E true
x |,

(that includes both amplitude and phase information) averaged over
source–receiver offsets from 3 to 10 km. The error is plotted in
Fig. 3 as a function of the Yee cell size �z, while the cell sizes in x
and y are always 50 m. We can see that for the linear interpolation
scheme (blue line) the error is first order, that is, proportional to
�z. This is in agreement with eq. (12) where the term proportional
to �z appears due to derivative discontinuity at the interface and is
ignored in the linear interpolation. It also follows graphically from
Fig. 1 that ignoring the sharp bend of the field profile leads to an
error proportional to �z. The proposed interpolation scheme (red
line in Fig. 3) removes essentially all the interpolation error. The
remaining error is much smaller and does not show a linear trend.
It is mostly caused by the error of differential operators close to
the seafloor. The error is not that large because we have performed
proper averaging of water and formation conductivities for the grid
nodes located at the seafloor (harmonic averaging for σ z and arith-
metic averaging for σ x, σ y). Nevertheless, the same derivative jump
at the seafloor that creates the interpolation error, also creates a
(smaller) error in the differential operators. For data shown in Fig. 3

Figure 4. Errors in the electric and magnetic fields recorded at the seafloor
for various positions of the seafloor relative to the grid nodes. The con-
ventional linear interpolation (blue) delivers large errors except for special
cases when the recording position coincides with the corresponding node.
The proposed rigorous interpolation (red) reduces the error dramatically and
makes it essentially independent of the seafloor position.

we used differential operators of half-length 1 in z and half-length
2 in x and y.

Fig. 3 considers the case when the interface falls exactly in the
middle between the layers of Ex nodes. This is the worst case sce-
nario for linear interpolation scheme leading to the maximal inter-
polation error in Ex. The ideal case is when positions of Ex nodes
coincide with the interface, then there is no need to interpolate Ex

along the vertical direction, and the corresponding interpolation er-
ror is zero. Unfortunately, it is not possible to place all Ex nodes
exactly at the seafloor in the general case of varying bathymetry
(unless one uses unstructured grids). Moreover, even if all Ex and
Ey nodes lie exactly at the seafloor, then the nearest Hx, Hy and Ez

nodes of the staggered Yee grid will be located half a cell above and
below it. Hence, one will have to interpolate Hx, Hy and Ez across
the interface and deal with discontinuities of their derivatives given
by eqs (4) and (5).

Fig. 4 displays errors in both Ex and Hy for various positions
of seafloor relative to the Yee grid. They are computed for the
same CSEM example as in Fig. 3, using 100 m cell size in z. If the
interface falls in the middle between Ex nodes—the case considered
in Fig. 3—then the linear interpolation error in Ex is maximal. At
the same time, Hy nodes lie exactly at the interface, hence the
error in Hy is small and independent of the interpolation scheme.
The opposite situation is observed when the interface coincides
with the plane of Ex nodes: then the maximal error is observed
for the Hy component: up to 7 per cent for the linear interpolation
that disregards derivative jumps. Obviously, for any position of
interface relative to the Yee grid, taking into account the derivative
discontinuities helps significantly reduce the error either for Ex, or
for Hy, or for both of them. Note that with the new interpolation
scheme the error becomes almost independent of the position of
interface (where we record the fields) relative to the Yee cell. It
implies that the new rigorous interpolation essentially removes all
the errors related to the presence of interface.

Use of the proposed rigorous interpolation becomes especially
important in the challenging case of very shallow water. To illustrate
this we consider another CSEM problem, similar to that used in
Fig. 1, but now the water layer is only 100 m thick (see Fig. 5).
Moreover, the cell size in the vertical direction is also 100 m, which
means that the water is represented by only one layer of cells. Let
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Figure 5. Magnitude of magnetic field as a function of the vertical coor-
dinate z for a CSEM model with 100-m-thick water layer. Circles indicate
field values computed at the nodes of modelling grid, while the lines are
the interpolation results. Even though there is only one node in the water,
the proposed rigorous interpolation reproduces very accurately the true field
profile, in particular, its bend at the formation–water interface. The linear
interpolation is obviously much less accurate.

us analyse the magnetic field now. It is directed along the y-axis in
the inline configuration. There is only one layer of Hy nodes in the
water, they are located in the middle of Yee cells, at a 50 m depth.
In that case performing an accurate interpolation in the vertical
direction is very challenging. Interpolation using only nodes in
water is hardly possible since there is only one node available.
Linear interpolation using one node in water and one in formation
produces significant errors at the seafloor, as evident from Fig. 5.
By contrast, the proposed rigorous interpolation is able to fit the
true field profile very accurately because it ‘knows’ about the jump
of field derivative at the seafloor and explicitly computes it using
the known conductivity values on the both sides of interface. As
a result, it arrives at the correct slope of field profile in the water,
which makes the interpolation error at any location within the water
layer remarkably small for a one-node interpolation problem. Good
accuracy of the results for a shallow water model also demonstrates
that our finite-difference approach is able to accurately handle a
boundary with highly resistive air in the close vicinity to sources
and receivers.

3 T I LT E D I N T E R FA C E

In this section, we describe how one can interpolate EM fields across
an interface that has an arbitrary orientation with respect to the
modelling grid (see Fig. 6). First, in Section 3.1, we present a basic
framework which takes into account discontinuity of the normal
electric field only. Then, in Section 3.2 we show how discontinuities
of the derivatives of tangential fields can be incorporated in the
presented framework.

The interpolation needs to be carried out in the coordinate system
aligned with the interface with subsequent transformation into the
coordinate system (x, y, z) of the modelling grid. As a result, it is
no longer possible to find interpolation coefficients separately for x,
y and z, and compose the 3-D interpolation coefficients by simple
multiplication, as in eq. (6). Instead, one has to set up the whole
interpolation in 3-D.

3.1 Framework

The first step in our approach is to evaluate the orientation of in-
terface close to the interpolation point. It is assumed that over a

Figure 6. Interface tilted with respect to the Yee grid. The goal of inter-
polation is to compute electric fields components at the recording location
(x0, y0, z0) from the known values of Ex, Ey and Ez at the grid nodes with a
proper account of all boundary conditions at the interface.

distance of a few cells close to receiver the interface can be accu-
rately approximated by a plane, that is, its curvature will be ignored.
Let the angles θ and φ define the transform between the coordinate
system (x, y, z) of the modelling grid and the new coordinate sys-
tem (τ x, τ y, n) aligned with the interface. Namely, the new system is
obtained by rotation by angle φ around the z-axis and then rotation
by angle θ around the τ x-axis. The third rotation around the normal
n is not needed since the direction of axes τ x and τ y within the
seafloor plane can be chosen arbitrarily. Thus the rotation matrix
for converting a vector from (τ x, τ y, n) to (x, y, z) reads:

R =
⎛
⎝ cos φ − sin φ cos θ sin φ sin θ

sin φ cos φ cos θ − cos φ sin θ

0 sin θ cos θ

⎞
⎠ . (14)

The interpolation problem for electric field at the recording side is
formulated as follows: we know field values at all grid nodes corre-
sponding to all components (Ex, Ey, Ez), and we need to find Ex, Ey

and Ez at a specific recording location (x0,y0,z0), see Fig. 6. So, the
goal is to find the interpolation coefficients for every node and for
every recorded field component. Due to presence of a tilted inter-
face, there will appear all kind of crossed interpolation coefficients,
hence to record any component, for example Ey, we will need to
use values at all types of nodes: Ex, Ey and Ez . The problem at the
source side is solved using the same interpolation coefficients, as
explained in Section 4.

To describe the electric field vector it’s convenient to use only
quantities which are continuous over the interface, that is, the tan-
gential fields Eτx, Eτy and the normal current density Jn. In the
vicinity of receiver, we approximate all of them using a Taylor ex-
pansion up to the first derivatives, for example, for Eτx one obtains:

Eτ x (τx , τy, n) = Eτ x0 + ∂ Eτ x

∂τx
(τx − τx0)

+ ∂ Eτ x

∂τy
(τy − τy0) + ∂ Eτ x

∂n
(n − n0) . (15)

Here (τ x0, τ y0, n0) is the receiver position in the coordinate system
aligned with the interface.

There are four unknowns in the above equation: Eτx0 and the
three derivatives. Combined with similar expansions for Eτy and
Jn, we end up with 12 unknowns. In order to find them, it would
be sufficient to use known electric field values at 12 nodes of the
modelling grid located close to the receiver. However, it is not clear
which 12 nodes should be chosen and whatever choice is made,
they will be distributed quite asymmetrically with respect to the
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receiver position. It would be preferable to use nodes surrounding
the receiver from both sides in each of three directions, leading to at
least 2 × 2 × 2 = 8 nodes for each field component. For Ex, Ey and
Ez it gives 24 nodes in total, and hence an overdetermined system:
24 equations and only 12 unknowns. One can also use higher-order
Taylor expansions instead of eq. (15), which leads to larger number
of unknowns. Then one may need to include more nodes into the
interpolation stencil: if there are M unknowns and N selected nodes
then it is required that M ≤ N.

For overdetermined systems the unknowns can be found by per-
forming the least-squares fit of field values at the selected nodes,
that is, by minimizing the functional,

S =
N∑

i=1

wi [(Eα(ri) − Eαi ]
2 . (16)

The sum here is over the selected nodes where α = x, y, z depending
on which node it is: Ex, Ey or Ez . Coefficients wi are the weights
that will be discussed in detail later. Then, Eαi is the known value at
the node i, while ri is position of that node in the (x, y, z) coordinate
system, and Eα(ri) is the electric field there evaluated from the Taylor
expansions. More specifically, one needs to use the expansion of eq.
(15) and similar ones for Eτy and Jn at the node position and then
perform a transform from quantities Eτx, Eτy, Jn evaluated at node
i to Exi, Eyi, Ezi at the same node i using the rotation matrix R from
eq. (14) and the equality Eni = Jni/σ ni. The quantities Eτx, Eτy, Jn

are never computed explicitly, but are just used for constructing the
system of equations that relates the field at the receiver location to
the field in the staggered modelling grid.

It is easy to see that one can express Eα(ri) as

Eα(ri) =
∑

m

eimum, (17)

where the sum is over all the unknowns (Eτx0, Eτy0, Jn0, and the cor-
responding derivatives) that are now denoted as um, m = 1, . . . , M.
Coefficients eim depend on the coefficients in the Taylor expansions,
rotation matrix R and values of σ ni. Note that σ i denotes here the ef-
fective conductivity for node i which is used in the finite-difference
scheme and typically computed by proper averaging of conductiv-
ities in the volume around this node. Presence of a tilted interface
implies that the effective conductivity tensor σ i has non-zero off-
diagonal elements even if the original two media are characterized
by a diagonal conductivity tensor σ (x, y, z). However, we shall as-
sume that tensor σ i is diagonal in the coordinate system aligned with
the interface, and σ ni is its principal value in the normal direction.

To minimize S one should set to zero the derivatives of S with
respect to all unknowns, ∂S/∂um = 0. This gives us a set of linear
equations that can be written in the matrix form as

A U = b, (18)

where U = (u1, . . . , uM)T is the vector of unknowns, while the
elements of the square matrix A are:

Amk =
N∑

i=1

wi eimeik . (19)

The right-hand side b can be expressed as

b = B F, (20)

where F = (Eα1, . . . , EαN)T is a vector of field values at the N
selected nodes (that include Ex, Ey and Ez nodes), while elements
of matrix B are

Bmi = wi eim . (21)

These definitions allow us to express the unknowns in a compact
form,

U = (A−1 B)F. (22)

The matrix product (A−1B) thus can give us all the interpolation
coefficients. For interpolation one needs only three unknowns, Eτx0,
Eτy0, Jn0, hence, only the three corresponding rows of matrix (A−1B)
will be used. Finally, one needs to go from the quantities Eτx0, Eτy0,
Jn0, to the corresponding values of Ex, Ey and Ez defined at the same
location (location of receiver). For that purpose one should first
divide Jn0 by conductivity σ n at the receiver location to get En0, and
then transform the electric field vector E to the (x, y, z) coordinate
system using eq. (14) for the rotation matrix R.

The other rows of the matrix (A−1B) correspond to spatial deriva-
tives of Eτx, Eτy, Jn. The presented framework thus can be used
not only to solve the interpolation problem, but also to build the
finite-difference scheme in the presence of interfaces. Indeed, it al-
lows one to evaluate all the field derivatives entering the Maxwell
equations at desired locations close to sharp conductivity contrasts.
Presentation of a framework that covers both the interpolation and
differential operators will be given elsewhere. A similar framework
for handling tilted interfaces was recently developed to compute
differential operators (Bauer et al. 2011). One important difference
from our approach is that Bauer et al. uses only four nearest nodes
for the interpolation stencil, which is just enough to find all the
unknowns.

The system of equations eq. (18) can be supplemented with ad-
ditional conditions, if necessary. For example, if a CSEM survey
is acquired in very shallow water using a surface-towed source
(Barker et al. 2012) that is located at a few-metre depth, then the
interpolation needs to be performed close to the sea surface. Let us
now assume that the air is excluded from the computation domain,
as was done, for example in Wang & Hohmann (1993) and Mittet
(2010). Then, a boundary condition Ez = 0 must be satisfied at the
sea surface since no currents can flow into the air. Including this
boundary condition into the interpolation scheme should improve
its accuracy. This can be done within the present framework by
adding a few fictitious Ez nodes located at the sea surface at arbi-
trary (x, y) coordinates close to the interpolation site. These extra
nodes should be included in the derivation starting with eq. (16)
on equal grounds with other nodes. Eventually, the interpolation
coefficients computed for these extra nodes should be disregarded
because Ez was set to zero there. However, interpolation coefficients
for all ‘real’ nodes will be modified due to including these fictitious
nodes, so that the interpolated fields are in agreement with the im-
posed boundary conditions. Implementation of this supplementary
boundary condition has been tested on the shallow-water CSEM
example used for Fig. 5. Four fictitious Ez nodes were introduced at
the air interface at the same (x, y) coordinates as regular Ez nodes of
the grid. It allowed us to reduce the relative Ez error averaged over
a depth interval of 50 m just below the sea surface from 1.6 to 1.0
per cent (the error was normalized to |E true

z | taken at the seafloor).

3.2 Derivative jumps

The presented framework allows one to avoid the problem with
discontinuity of the normal electric field, En, because the interpo-
lation is instead built on the continuous normal current density Jn.
Now we need to take into account also discontinuities in the deriva-
tives. For all the interpolated quantities, Jn as well as the tangential
field components Eτx, Eτy, their normal derivative ∂/∂n has a jump
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across the interface. Expressions for the jumps are given in Section
2.1 for an interface parallel to the (x, y) plane and normal in the z
direction. Here we shall use the same expressions, but rewritten for
an interface in the plane (τ x, τ y) and normal n.

The presence of derivative jumps requires that the Taylor expan-
sion (15) is modified since the derivative ∂Eτx/∂n acquires different
values at the two sides of the interface. One can write

∂ Eτ x

∂n
(n − n0)

=

⎧⎪⎪⎨
⎪⎪⎩

∂ Eτ x1

∂n
(n − n0), n ∈ �1,

∂ Eτ x1

∂n
(n − n0) +

(
1

σn2
− 1

σn1

)
∂ Jn

∂τx
(n − n∗), n ∈ �2,

(23)

where it is assumed that the receiver is located in medium �1. A
similar modification needs to be done to the term with ∂Eτy/∂n. The
jump in the derivative of the normal current is given by a rewritten
eq. (5) as σ n2(∂Jn1/∂n) = σ n1(∂Jn2/∂n). Thus the term in the Taylor
expansion for Jn will be modified to:

∂ Jn

∂n
(n − n0) =

⎧⎪⎪⎨
⎪⎪⎩

∂ Jn1

∂n
(n − n0), n ∈ �1

∂ Jn1

∂n

[
(n∗ − n0) + σn2

σn1
(n − n∗)

]
, n ∈ �2.

(24)

The effect of these derivative jumps is that coefficients eim in eq.
(17) will be modified. For example, the result of jump in ∂Eτx/∂n
is that coefficients eim1 responsible for the unknown ∂Jn/∂τ x will
get an additional term proportional to the resistivity jump, (1/σ n2

− 1/σ n1), and to the coefficients eim2 responsible for the unknown
∂Eτx1/∂n. As a results, there will be changes in the matrices A and
B defined by eqs (19) and (21), and one will eventually arrive at
different values of the interpolation coefficients.

3.3 Weights

Let us now discuss coefficients wi in eq. (16) that define relative
weights of different grid nodes in the functional S to be minimized.
In principle, one can simply set wi = 1 for all nodes in the inter-
polation stencil, which gives reasonably good results. However, a
somewhat problematic issue appears here if a receiver is located
exactly at the grid node. One then normally expects that the in-
terpolated value should coincide with the value at this node. This
intuitive property is shared by most interpolation schemes, but it is
not guaranteed in an overdetermined scheme. Indeed, in our scheme
the number of unknowns is smaller than the number of nodes, hence
the values at the nodes will be fitted in the best possible least-squares
way, but not exactly.

This problem can be solved by setting weights inversely propor-
tional to the distance between the node and the receiver,

wi ∝ |ri − r0|−1 . (25)

Then for receiver close to a particular node, the weight of that
node will be overwhelmingly high compared to weights of all other
nodes. Minimization of S will then produce a function that acquires
the specified values at all the nodes and smoothly interpolates in
between.

The same result can be achieved if the weights are set to depend
separately on the distances along the three coordinates:

wi ∝ |(xi − x0)(yi − y0)(zi − z0)|−γ (26)

rather than on the 3-D distance as in eq. (25). The exponent γ can
take any positive value, we used γ = 0.5, and also avoided the
divergence by introducing a cut-off at small distances ∼1 m. The
advantage of this scheme shows up when a receiver aligns with po-
sitions of grid nodes along one of the coordinates. Let us assume,
for example that the x coordinate of receiver, x0, coincides with the
x coordinate of one layer of Ex nodes. Then intuitively one expects
that only Ex nodes with xi = x0 should be used for interpolation of
component Ex at the receiver, while interpolation coefficients for
nodes beyond the plane x = x0 must be zero. The present weight-
ing scheme guarantees exactly that. Its additional advantage is that
the interpolation coefficients always change continuously when the
receiver is moved across the grid. Even small changes in the re-
ceiver position may change the interpolation stencil that covers the
nearest 24 nodes, however the continuity is still preserved because
the interpolation coefficients for the most distant nodes in the sten-
cil are always zero. Our interpolation scheme thus preserves the
continuity of the recorded field components everywhere within the
grid, but accurately reproduces discontinuities across the interface
even though it may cross the grid at an arbitrary position and at an
arbitrary angle.

Finally, let us discuss a small modification of weights that helps
balance the contributions of Ez nodes on both sides of the inter-
face. Since the seafloor is usually more or less horizontal, a jump
of normal electric field at the seafloor results in much lower values
of Ez in the water than in formation. All terms in the minimiza-
tion functional (16) are proportional to the field squared, therefore
Ez nodes in formation will normally have a much stronger effect
on the interpolated value at the receiver than Ez nodes in water.
To compensate for this asymmetry, one can multiply the weights
in eq. (16) by σ 2

zi , where σ i denotes the effective conductivity for
node i. This factor will ensure that Ez nodes in water and in forma-
tion located at the same distance from the receiver will have equal
effect on the interpolated value (for a horizontal seafloor).

3.4 Numerical example

3.4.1 Model description

The accuracy of the proposed interpolation scheme for a tilted inter-
face has been tested on a marine CSEM example where the seafloor
is dipping. The seafloor represented a sharp conductivity contrast
between the water conductivity above, 3.2 S m−1 and formation con-
ductivity below, 1 S m−1. The dip angle of the seafloor was 20◦. The
strike direction was at an angle of 30◦ with the respect to the x-axis,
which is essentially the case shown in Fig. 6. Hence, we consid-
ered the most general orientation of the seafloor with respect to the
finite-difference grid.

The receiver was located exactly at the seafloor, while the electric
dipole source was towed 30 m above it. In the first run, the cell sizes
of the grid were relatively coarse 200 × 200 × 50 m in x, y and z,
respectively. These sizes are quite practical when working with EM
data coming from today’s large-scale full-azimuth 3-D surveys, if
one aims at realistic times for the full 3-D inversion of survey data.
It is therefore important to know whether a finite-difference scheme
can handle large dip angles with acceptable accuracy for these coarse
cell sizes. Note that the CSEM source is located approximately
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Figure 7. Equivalence of configurations with dipping and horizontal
seafloors: electric field E measured by receiver will be the same in both
configurations provided water and formation occupy half-spaces. Hence,
the exact solution available for the horizontal seafloor can be used for the
dipping floor case after proper coordinate transformation. In the presented
numerical example the dip angle, α, was 20◦.

half a cell above the seafloor, hence interpolation for many source
positions included not only nodes in the water, but also nodes in the
formation. Thus in the present example the interpolation is carried
out across the seafloor both for the source position and for the
receiver. The computations were performed with a finite-difference
time-domain 3-D code described by Maaø (2007) and Mittet (2010).

In order to evaluate the accuracy of 3-D modelling code, its results
should be compared to the exact solution for the considered dipping-
floor model. Despite the semi-analytical solution for the CSEM
problem (Løseth & Ursin 2007) is available only for horizontally
layered earth, it is possible to use it for a dipping floor too, as
illustrated in Fig. 7. The trick here is to rotate the coordinate system
so that the seafloor becomes horizontal. The computed fields in both
configurations will be equivalent if the water and formation layers

are infinitely deep. To make sure that these conditions are fulfilled,
the 3-D modelling was based on a resistivity model with very deep
water layer: the model dimensions were 24 × 24 × 30 km, and the
water depth varied from 4 km in the shallowest to ≈16 km in the
deepest part.

The source was towed along the dip direction parallel to the
seafloor and the source dipole was pointing in the same direction,
that is had a pitch of 20◦ (see Fig. 7, left-hand panel). Due to the
symmetry of the problem, the electric field at the receiver loca-
tion lies in the dipping plane—the plane shown in the figure. We
shall analyse separately the field component recorded parallel to the
seafloor, E||, and its component normal to the seafloor, E⊥.

3.4.2 Results

Let us compare three interpolation schemes:

(i) Rigorous interpolation—the interpolation method proposed
in this paper based on equations in Sections 3.1 and 3.2.

(ii) Rigorous interpolation without derivative jumps—the same
method, but without taking into account the jumps of field deriva-
tives at the interface. In other words, we use the framework of Sec-
tion 3.1 that accounts for discontinuity of the normal field En, but
disregard discontinuity of ∂Eτx/∂n, ∂Eτy/∂n and ∂Jn/∂n described
in Section 3.2.

(iii) Trilinear interpolation in the water—the standard trilinear
interpolation, but using only grid nodes located within the water
layer to avoid issues with discontinuities at the seafloor. The inter-
polation will first try to use the 2 × 2 × 2 = 8 nearest nodes, but
if at least one of them falls below the seafloor, it will instead use
another set of eight nodes obtained by moving one cell up to make
sure all the eight nodes are in the water (sometimes one may need
to move up by two or more cells).

Figure 8. Magnitude and phase error for different interpolation schemes for electric field components E|| parallel and E⊥ normal to the seafloor that is tilted
by 20 degrees relative to the modelling grid. The proposed rigorous interpolation gives the best results at essentially all source–receiver offsets. Frequency
0.25 Hz.
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Figure 9. Normalized magnitude error for different interpolation schemes
on a finer grid (100×100×25 m) than in Fig. 8. Shown is the electric
field E|| parallel to the seafloor that is dipping at 20◦, the frequency is
0.25 Hz. The error is asymmetric in the downdip and updip directions, but
in both directions the rigorous interpolation proposed in the paper is the
most accurate.

Fig. 8 displays the error in the electric field E computed by the
3-D code using different interpolation schemes, as compared to
the exact solution Etrue of Løseth & Ursin (2007) after rotating
the coordinate system. Shown at the top row is the error in the
normalized magnitude |E/Etrue|− 1, while the bottom row shows the
difference in phases for E and Etrue. The left-hand plots correspond
to the component E|| parallel to the seafloor, while the right plots—
to the normal field, E⊥. The proposed rigorous interpolation (red
curve) clearly gives the best results on all the four plots. Ignoring
the discontinuity of derivatives at the interface (blue curve) leads to
a systematic error both in magnitude and in phase. The magnitude
is again underestimated, like in the case with a horizontal seafloor
in Fig. 1. Interpolation using nodes in the water only (green curve)
also leads to a systematic error and in addition results in chaotic
oscillations from point to point. Small oscillations are also present at
the two other curves because the interpolation accuracy is affected
by the relative position of interpolation location with respect to
the grid nodes. This effect however becomes much stronger for the
interpolation scheme using only nodes in water since they are in
general farther away from the interpolation point.

Shown in Fig. 9 are similar results for the parallel field, E||,
obtained on a finer grid, 100×100×25 m, that is with halved cell
sizes in all directions. Smaller cell sizes naturally lead to smaller
errors for all interpolation methods, however the proposed rigorous
interpolation still provides the best results. This figure shows both
intow and outtow offsets in order to illustrate that the interpolation

error can be very asymmetric in the downdip and updip directions—
this is clearly the case for the green curve (trilinear interpolation
using water nodes).

3.4.3 Naive interpolations

In addition to the three interpolation methods compared in Figs 8
and 9, we would like to consider also two ‘naive’ interpolation
approaches and explain why they fail in the presence of tilted inter-
faces. These approaches are:

(iv) Trilinear interpolation—in its simplest form where it is
based on the 2 × 2 × 2 = 8 nearest nodes even if they are lo-
cated at different sides of the interface. The interpolated quantities
are Ex, Ey and Ez .

(v) Trilinear interpolation using Jz—a modification of trilinear
interpolation that makes use of the fact that the seafloor is often
nearly horizontal. Instead of interpolating the vertical electric field
Ez that has a clear jump at the seafloor, one here interpolates the
vertical current density Jz . This approach is very accurate in the case
of horizontal seafloor where Jz is continuous indeed. Therefore one
may expect that for small dipping angles, Jz is still a much smoother
function than Ez and hence hope for relatively small interpolation
errors.

The results for both interpolation methods are presented in Fig. 10
as plots of the normalized magnitude error versus offset for the same
model and parameters as in Fig. 8. Note that the scale of y-axis now
is different because both naive interpolations are very inaccurate
when the dipping angle is 20 degrees. The standard trilinear inter-
polation works reasonably well only for the field component E|| that
is parallel to seafloor and therefore exhibits a smooth behaviour
(top panel). The error for the normal component, E⊥, is however
huge (bottom panel) because its values in formation are much larger
than those in water and this fact is disregarded. Trilinear interpo-
lation using Jz provides a much better accuracy for E⊥ since it
respects the fact that the vertical field Ez = Jz/σ z has larger values
in the formation. Small misalignment between E⊥ and Ez does not
lead to significant errors in this case. However, this interpolation
method becomes very inaccurate for the component E|| parallel to
the seafloor, see the top panel again. The field E|| is continuous
across the seafloor, and discontinuity of Ez which is imposed in
this method, leads to significant discontinuous component in E||
resulting in large interpolation errors.

We listed average errors for all the interpolation schemes in
Table 1. In order to include both amplitude and phase errors, we

Figure 10. Normalized magnitude error for the rigorous interpolation (red) and two naive interpolation schemes. Trilinear interpolation using the vertical
current density Jz gives very large errors in the electric field E|| parallel to the dipping seafloor (top panel), while the standard trilinear interpolation leads to
huge errors in the normal electric field, E⊥ (bottom panel). The dipping angle is 20 degrees, frequency is 0.25 Hz and the cell sizes are 200 × 200 × 50 m.
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Table 1. Averaged errors (in per cent) in electric field for several interpolation methods.

Cell sizes 200 × 200 × 50 m 100 × 100 × 25 m
Field component E|| E⊥ E|| E⊥
Frequency 0.25 Hz 1 Hz 0.25 Hz 1 Hz 0.25 Hz 1 Hz 0.25 Hz 1 Hz

(i) Rigorous interpolation 1.3 3.0 1.6 3.0 0.8 1.6 1.2 2.3
(ii) Rigorous interpolation w/o derivative jumps 5.1 8.9 4.4 8.3 2.4 4.7 2.1 4.5
(iii) Trilinear interpolation using nodes in water 6.1 10.2 18.1 18.8 4.2 5.4 17.8 17.3
(iv) Trilinear interpolation 6.2 9.9 54.7 53.1 3.5 5.4 55.6 54.7
(v) Trilinear interpolation using Jz 20.7 26.2 7.5 9.5 21.4 22.9 14.4 14.0

again used the quantity |E − Etrue|/|Etrue|. Root mean square aver-
age of this quantity was computed over the range of source–receiver
offsets from 1.5 to 8 km including both the downdip and updip di-
rections. At shorter offsets there appears significant error due to
discretization of the point source, while at very long offsets bound-
ary effects become noticeable. However in the chosen interval of
intermediate offsets the total computational error is dominated by
the error of interpolation scheme. The rigorous interpolation pro-
posed in this paper demonstrates the best accuracy for all the field
components, frequencies and cell sizes included in the analysis.

3.4.4 Magnetic field

The proposed rigorous interpolation taking into account the deriva-
tive jumps at the interface can be applied not only for the electric
fields, as demonstrated in Sections 3.1–3.3, but also for the mag-
netic fields. We consider interfaces characterized by a jump in the
electric conductivity, while the magnetic permeability is assumed
uniform. Such interfaces are in general a smaller problem for the
magnetic field since all its components remain continuous (unlike
the normal E that has a jump), and one of them—the normal H—
even has a continuous derivative. Thus, the interpolation errors for
magnetic fields are usually smaller and even a tilted interface would
never lead to catastrophic errors of the kind displayed in Fig. 10 for
the electric fields.

The above considerations are confirmed by Fig. 11 showing the
magnitude and phase errors for the tangential magnetic field H|| for
the same CSEM model with a 20◦ dipping seafloor as was used
for Fig. 8. In this inline configuration the magnetic field at the re-
ceiver is directed normal to the plane depicted in Fig. 7. The normal
magnetic field H⊥ is not shown on the plot not so much because it is
zero, but more importantly because its derivative is continuous over
the seafloor and therefore all interpolation approaches give equally
good results for H⊥. Errors in the tangential H shown in Fig. 11 are
smaller than those in E in Fig. 8. Even for a simple trilinear interpo-
lation (black) they hardly exceed 2 per cent. Trilinear interpolation
using nodes in the water (green) gives here a larger error because
the interpolation stencil is further away from the recording position.
At the same time, interpolation that takes into account the deriva-
tive discontinuity at the seafloor (red) again produces the smallest
error. Interpolation for the electric source towed 30 m above the
seafloor was in all these cases performed using the rigorous inter-
polation scheme for E field presented in Sections 3.1–3.3. Thus, the
difference between the three curves in Fig. 11 stems solely from
the interpolation method used for the magnetic field recorded at the
seafloor.

4 D I S C U S S I O N

The proposed rigorous interpolation is based on the properties of the
Maxwell equations and therefore requires more input information

Figure 11. Normalized magnitude and phase errors for the tangential mag-
netic field. The smallest error is found for the proposed rigorous interpolation
scheme (red). All parameters are the same as for Fig. 8 showing the electric
field errors: 20◦ dip, frequency of 0.25 Hz, 200 × 200 × 50 m cell sizes.

than conventional interpolation schemes. In addition to the record-
ing position relative to the grid nodes, one also needs to know (i) the
position of interface, (ii) the interface normal and (iii) the conduc-
tivity values at each side of interface. With this information in place,
one can explicitly compute the derivative jumps at the interface and
hence safely interpolate using nodes on both sides of an interface.

The physics and necessary conditions to solve the problem is
most easily understood in a 1-D setting, as shown in Section 2. An
important property of the proposed rigorous interpolation is that
it mixes different field components. For example, eq. (13) shows
that evaluation of Ex at an arbitrary receiver location, may require
not only values of Ex computed at the surrounding nodes, but also
surrounding values of Ez . There is also mixing of magnetic and
electric fields, for example it follows from eqs (4) that in order to
interpolate Hx one needs not only Hx, but also Ey nodes. In the
case of an interface misaligned with the grid, the mixing of field
components is even more complex, as shown in Section 3.

We have presented a first-order rigorous interpolation, but the
same framework can be also extended to higher orders. This
can be done by using higher order Taylor expansions instead of
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first-order expansions in eqs (7) and (15). Correspondingly, one
will then need a longer interpolation stencil on both sides of the
interface. Extending the analysis of Section 2.1 to higher-order
derivatives shows that many of them are also discontinuous across
an interface and those discontinuities should also be included into
a higher-order interpolation scheme. Finally, we would like to men-
tion that the proposed interpolation scheme will work for uniform,
for non-uniform and even for unstructured grids.

The proposed interpolation can be applied not only at the record-
ing positions, but also for the interpolation of EM source if its
position doesn’t coincide with a relevant grid node. The interpola-
tion coefficients then tell how large weight of the source should be
placed on every neighbouring node of the modelling grid. Luckily,
due to the reciprocity property of the Maxwell equations, the in-
terpolation coefficients are identical for the source and for receiver
interpolation. Hence, one can use exactly the same strategy to de-
rive the interpolation coefficients in both cases. Field components
will get mixed also in the case of source interpolation, for example,
to model an electric dipole source in the x-direction located at a
horizontal interface, we should place some source terms at the sur-
rounding Ex nodes and some small ‘fictitious’ source terms at the
surrounding Ez nodes.

The error of several interpolation methods is quantified for two
choices of modelling grid in Table 1. The poor results of conven-
tional interpolation schemes come from the fact that the normal
electric field is discontinuous at the interface, and this introduces
discontinuities in the normal derivative of other field components.
Hence, any interpolation method based on analytic functions across
the interface will lead to an error proportional to the grid cell size.
Table 1 suggests that without a proper account of the derivative dis-
continuities, one needs to reduce the cell size by at least a factor of 2
to achieve the same accuracy. Indeed, the best interpolation method
neglecting the derivative jumps for a 200 × 200 × 50 m grid leads
to an error of 5.1 per cent for the tangential field E|| at 0.25 Hz.
By using a finer grid 100 × 100 × 25 m one can reduce the error
significantly: to 2.4 per cent, at the expense of longer computational
time. However one can keep the coarse grid, but apply the proposed
interpolation scheme: the error will be reduced even more, down to
1.3 per cent, while the computational time would not change. For
a time domain finite difference method halving the cell size trans-
lates to an increase in the computational time by at least a factor of
∼ 2

√
2 (where we took a conservative approach that only cell size

in vertical direction �z matters and assumed that a time step is pro-
portional to

√
�z). Numerical example for a horizontal interface,

Fig. 3, shows that the resulting increase in the computational time
can be significantly larger.

It is important to take into account discontinuities at the seafloor
only if the conductivity jump there is significant. Measurements
performed using near-surface EMs in the Baltic Sea give conduc-
tivity for the bottom water layer of ∼2.6 S m−1, while conductivity
of the top formation varies between 0.03 and 1.3 S m−1 (Müller
et al. 2011). It means that the conductivity changes at the seafloor
very abruptly by at least a factor of 2, and at some locations by more
than a factor of 10. Thus, a conductivity jump of 3.2 assumed in our
numerical examples is a fairly realistic number.

5 C O N C LU S I O N S

We present a rigorous interpolation method for finite difference EM
modelling that can handle interfaces misaligned with the modelling
grid. The method is based on properties of the Maxwell equations
that dictate not only a discontinuity of the normal electric field at

interfaces, but also discontinuities of the derivatives of other field
components. Taking into account the derivative discontinuity re-
moves a first-order error of conventional interpolation schemes that
are based on continuous analytic functions. The proposed method
allows using a coarser grid close to interfaces that in our numerical
examples reduces the computational time by a factor of ∼3.

In the proposed method, the derivative jumps are computed ex-
plicitly by using conductivity values at each side of the interface.
As a result, one can interpolate using grid nodes on both sides of
the interface without any accuracy loss. The proposed interpolation
mixes field components e.g. the interpolation stencil for Ex includes
not only the nearest Ex nodes, but also nearest Ey and Ez nodes.

The interpolation can be fine-tuned using weighting scheme be-
cause it is based on solving an overdetermined system of equations.
It also allows adding boundary conditions if a model boundary is
located close to an interface. Finally, the proposed rigorous inter-
polation can be applied to both sources and receivers, can handle
non-uniform and unstructured grids and can be used not only for an
interface between two conductors, but also for an interface between
two dielectrics.

A C K N OW L E D G E M E N T S

We thank EMGS and Statoil ASA for the permission to publish the
results and Sebastien de la Kethulle de Ryhove as well as Trude
Støren for encouraging discussions.

R E F E R E N C E S

Abubakar, A., Habashy, T.M., Druskin, V.L., Knizhnerman, L. & Alum-
baugh, D., 2008. 2.5D forward and inverse modeling for interpreting low-
frequency electromagnetic measurements, Geophysics, 73, F165–F177.

Alcocer, J.E., Garca, M.V., Soto, H.S., Baltar, D., Paramo, V.R., Gabrielsen,
P. & Roth, F., 2013. Reducing uncertainty by integrating 3D CSEM in the
mexican deep-water exploration workflow, First Break, 31, 75–79.

Avdeev, D.B., 2005. Three-dimensional electromagnetic modelling and in-
version from theory to application, Surv. Geophys., 26, 767–799.

Barker, N.D., Morten, J.P. & Shantsev, D.V., 2012. Optimizing em data
acquisition for continental shelf exploration, Leading Edge, 31(11), 1276–
1284.

Bauer, C.A., Werner, G.R. & Cary, J.R., 2011. A second-order 3D electro-
magnetics algorithm for curved interfaces between anisotropic dielectrics
on a Yee mesh, J. Comput. Phys., 230, 2060–2075.

Börner, R.-U., 2010. Numerical modelling in geo-electromagnetics: ad-
vances and challenges, Surv. Geophys., 31(2), 225–245.

Constable, S., 2010. Ten years of marine CSEM for hydrocarbon exploration,
Geophysics, 75(5), 75A67–75A81.

Hesthammer, J., Stefatos, A., Boulaenko, M., Fanavoll, S. & Danielsen, J.,
2010. CSEM performance in light of well results, Leading Edge, 29(1),
34–41.

Løseth, L. & Ursin, B., 2007. Electromagnetic fields in planarly layered
anisotropic media, Geophys. J. Intl., 170, 44–80.

Maaø, F.A., 2007. Fast finite-difference time-domain modelling for marine-
subsurface electromagnetic problems, Geophysics, 72, 19–23.

Mittet, R., 2010. High-order finite-difference simulations of marine CSEM
surveys using a correspondence principle for wave and diffusion fields,
Geophysics, 75, 33–50.

Morten, J., Roth, F., Karlsen, S., Timko, D., Pacurar, C., Olsen, P., Nguyen,
A. & Gjengedal, J., 2012. Field appraisal and accurate resource estimation
from 3D quantitative interpretation of seismic and CSEM data, Leading
Edge, 31(4), 447–456.

Müller, H., von Dobeneck, T., Nehmiz, W. & Hamer, K., 2011. Near-surface
electromagnetic, rock magnetic, and geochemical fingerprinting of sub-
marine freshwater seepage at Eckernförde Bay (SW Baltic Sea), Geo-Mar.
Lett., 31(2), 123–140.

 by guest on D
ecem

ber 15, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Interpolation near tilted interfaces 757

Nadobny, J., Sullivan, D., Wlodarczyk, W., Deuflhard, P. & Wust, P., 2003.
A 3-D tensor FDTD-formulation for treatment of sloped interfaces in
electrically inhomogeneous media, Anten. Propagat., IEEE Trans., 51(8),
1760–1770.

Roth, F., Lie, J., Panzner, M. & Gabrielsen, P., 2013. Improved target imaging
with a high-power deck-mounted CSEM source—a field example from
the North Sea, in Proceedings of the 75th EAGE Conference & Exhibition,
pp. Tu 11 10.

Streich, R., 2009. 3D finite-difference frequency-domain model-
ing of controlled-source electromagnetic data: direct solution

and optimization for high accuracy, Geophysics, 74, F95–
F105.

Taflove, A. & Hagness, S.G., 2005. The Finite-Difference Time Domain
Method, Artech House.

Wang, T. & Hohmann, G., 1993. A finite-difference, time-domain solution
for three-dimensional electromagnetic modeling, Geophysics, 58, 797–
809.

Wirianto, M., Mulder, W. & Slob, E., 2011. Applying essentially non-
oscillatory interpolation to controlled-source electromagnetic modelling,
Geophys. Prospect., 59, 161–175.

 by guest on D
ecem

ber 15, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/

