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ABSTRACT

We analyzed marine controlled-source electromagnetic
(CSEM) acquisition in shallow water by analytic and numer-
ical calculations. The problem at hand was the fact that the
amplitude of the airwave due to a horizontal electric dipole
becomes larger as the water depth is reduced. The amplitude
of the scattered field from a buried thin resistor would be
difficult to extract from the increased total field if the scat-
tered-field amplitude were independent of water depth.
However, we identified and explained a compensating effect
where the amplitude of the scattered field increases with re-
duced water depth. This amplification effect makes marine
CSEM surveys in shallow water feasible. We derived an ap-
proximate expression for the total field for a simple but rea-
listic conductivity model. This expression explains why the
amplitudes of the term that describes the background field
contribution and the term that gives the scattered field from
the thin resistor increase when the water depth is reduced.
Our results and sensitivity analysis indicated that the sensi-
tivity of marine CSEM data acquired in a water depth of
40 m is comparable to the sensitivity of marine CSEM data
acquired in a water depth of 300 m.

INTRODUCTION

The marine controlled-source electromagnetic (CSEM) method
was introduced as a technique to determine the high resistivity of
the lithosphere in deep water. The purpose was to compensate for
the low amplitudes of the magnetotelluric (MT) fields at high fre-
quencies (Cox, 1980; Young and Cox, 1981). The signal contribu-
tion from interactions at the air-water interface (airwave) was of
little concern in this case due to the large water depth, which attenu-
ates any such signal when the source and receiver are near the sea-
floor. Issues related to the airwave attracted more attention when the

marine CSEMmethod was introduced as a hydrocarbon exploration
tool (Eidesmo et al., 2002; Ellingsrud et al., 2002). It would be an
obvious limitation if the method could be used in deep water only,
because many prospects are situated in shallow-water areas. An
overview of the marine CSEM method and its development as a
hydrocarbon exploration tool is given in Constable (2010).
The concern with regard to the airwave has been that when the

transmitted waveform is a harmonic, the response from a resistive
thin hydrocarbon-bearing layer can be hard to detect in shallow
water areas because the airwave contribution increases when water
depth decreases. Thus, 10 years ago, the view was that the marine
CSEM method had problems in water depths of 500 m or less, and
several papers have since suggested techniques to mitigate the air-
wave response (see, e.g., Andréis and MacGregor, 2008; Maaø and
Nguyen, 2010; Chen and Alumbaugh, 2011).
The water depth dependence of the total field due to the airwave

effect is demonstrated using field data in Figure 1. This plot shows
normalized inline electric field data from a survey area close to the
equator, where the water depth varied considerably. The data were
measured by receivers deployed at different water depths, and the
source was for each receiver towed close to the seafloor along con-
stant water-depth contours. The indicated depths pertain to the ac-
tual water depth at the receiver positions. Slightly different source
waveforms were used, and in the plot, the frequencies displayed are
in the range 0.25 to 0.3 Hz. From these results, we can infer the
typical total field dependence on the water depth. The total recorded
field is the sum of several contributions including the airwave and
potentially also the scattered field from a buried resistive hydrocar-
bon reservoir. Comparing to deep water (1841-m water depth), Fig-
ure 1 shows that the total field amplitude can be two times larger at a
352-m water depth at a source-receiver offset of less than 8000 m,
and one to two orders of magnitude larger at a 45-m water depth.
This is a challenge if the scattered field from a buried resistor has an
amplitude that is independent of water depth. In particular, there are
contributions to noise and uncertainty that scale with the amplitude
of the total recorded field. If these contributions are of the same size
as the scattered field we seek, then the identification of the scattered
field response becomes very hard.
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It was clear by 2003 that marine CSEM could be applied success-
fully in water depths of 300 m. Work with synthetic data indicated
that frequency-domain marine CSEM combined with up-down
decomposition (Amundsen et al., 2006) gave sufficient sensitivity
to a buried resistor at these water depths. This was part of the
motivation for the first calibration survey on the Troll Western
Gas Province in 2003 (Johansen et al., 2005), where the water depth
is approximately 330 m. In fact, it turned out that the response from
the reservoir was so strong that up-down decomposition was not
necessary to detect the reservoir. But, as demonstrated in Amundsen
et al. (2006), the up-down decomposition enhanced the sensitivity
to the hydrocarbon charged reservoir significantly when consider-
ing normalized amplitude and phase difference. A water depth of
300 m is not viewed as shallow water for marine CSEM surveys
today. But what about water depths of 100 m or less?
In this paper, we will investigate the effect of reducing the water

depth on the CSEM data analytically and by studying synthetic and
real data. First, we will establish a measure that allows us to quan-
titatively compare the sensitivity to a buried thin resistor for differ-
ent water depths. This shows that the sensitivity for, e.g., 300-m
water depth is similar to 40-m water depth. Next, we derive an ana-
lytic expression for the CSEM response. The resulting expression
explains quantitatively and qualitatively the dependence on water
depth for the buried resistor response and the airwave. Finally,
we study modeling results to further explore the shallow-water
phenomenology.

SENSITIVITY OF CSEM IN SHALLOW WATER

In the introduction, we stated that the CSEMmethod is feasible in
a 300-m water depth, and we raised the question of sensitivity at
shallower water depths such as 100 m. Let us indicate the answer
to this question from results of full waveform simulations, by which
we define a modeling approach without other assumptions than a
1D model geometry (Løseth and Ursin, 2007). We associate sensi-
tivity with the magnitude of the data difference between a simula-
tion in which the model has a thin resistive layer (hydrocarbon
reservoir) embedded (case A) and a simulation in which the back-
ground is the same but the resistive layer is absent (case B). We

consider the x-directed electric field measurement from a receiver
at position rr due to a horizontal electric dipole along the x-direction
with frequency f, angular frequency ω ¼ 2πf, at position rs (inline
data). This will be denoted Exðrrjrs;ωÞ. We can then define the
complex data difference, or scattered field, as

ΔExðrrjrs;ωÞ ¼ EA
x ðrrjrs;ωÞ − EB

x ðrrjrs;ωÞ: (1)

Finally, we include the effect of measurement inaccuracy by nor-
malizing ΔExðrrjrs;ωÞ to the estimated measurement uncertainty
δExðrrjrs;ωÞ and we define the following quantity as a measure
of sensitivity:

Ψ ðrrjrs;ωÞ ¼
����ΔExðrrjrs;ωÞ
δExðrrjrs;ωÞ

����: (2)

When the scattered field exceeds the uncertainty estimate, the sen-
sitivity measure will be larger than unity Ψ > 1. This can also be
seen as a minimum criterion that the target effect on the data sample
is significant and detectable.
The measurement uncertainty can be estimated using error

propagation analysis. This formalism allows us to take into account
the partial contributions to uncertainty due to inaccurate informa-
tion about, e.g., equipment positioning and calibration, as well as
ambient noise. The predicted measurement uncertainty assuming
independent and random contributions is given by the following
expression:

δExðrrjrs;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

���� ∂Exðrrjrs;ωÞ
∂pn

δpn

����2
s

: (3)

Here, pn denotes an experimental parameter with the associated
measurement uncertainty δpn. This could be, e.g., the transmitter
position rs, that for some water depth was known only to an accu-
racy of 10 m.
In this study, we will use a simplified model to estimate the un-

certainty due to positioning and calibration and assume that for
these contributions ð∂Ex∕∂pnÞδpn ∝ Ex. It can be shown using de-
tailed analysis (Mittet and Morten, 2012) that this is a good approx-
imation for the offsets relevant in this paper. The approximate
uncertainty model based on equation 3 to be used then becomes

δExðrsjrs;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαEA

x ðrrjrs;ωÞj2 þN 2

q
: (4)

Here, we introduced the relative uncertainty in the field amplitude α.
In this paper, we will use α ≈ 3% as a constant with respect to off-
set. The ambient noise contributions are captured by the water-
depth-dependent term N .
The ambient noise level can be much larger in shallow water than

in deep water due to the less effective screening by the water layer.
The noise sources could be MT signals or swell noise. In addition,
we expect motion noise to increase when the water depth is reduced.
There are also water-depth-independent contributions such as receiv-
er self-noise. We have chosen some typical values relevant for nor-
malized electric data:

Figure 1. Real data amplitude from a survey area covering a wide
range of water depths. For the different receivers, the displayed fre-
quency is 0.25 Hz for water depths 1841 and 1479 m and 0.3 Hz for
the other water depths shown.
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N ð2000 mÞ ¼ 5 × 10−16
V

Am2
;

N ð300 mÞ ¼ 3 × 10−15
V

Am2
;

N ð100 mÞ ¼ 7 × 10−15
V

Am2
;

N ð40 mÞ ¼ 1.5 × 10−14
V

Am2
: (5)

In Figure 2, we show the sensitivity defined by equation 2 and
the uncertainty model described above for water depths ranging
from deep (2000 m) to very shallow (40 m). The 1D conductivity
model is shown in Figure 3. From Figure 2, we see that the sensi-
tivity to the target is expected to be good for all water depths be-
cause it by far exceeds the threshold Ψ ¼ 1 for a wide offset range.
Furthermore, we can expect that the sensitivity will be reduced
when the water depth is decreased from 2000 to 300 m, but further
reduction of the water depth gives an insignificant effect on sensi-
tivity. Because extensive experience has established that the CSEM
method works well at, e.g., a 300-m water depth (for some recent
examples, see, e.g., Fanavoll et al., 2012), we can therefore expect
that similar targets can be characterized equally well at shallower
water depths. Indeed, CSEM data are today routinely acquired in
water depths of less than 100 m. Several surveys have been per-
formed in water depths of 40 to 50 m. Data acquired at these water
depths are processed in a standard manner by 3D inversion. No spe-
cial preprocessing of the data is required.
We will take a broad definition of the term airwave, which in the

following discussions will refer to any signal arising due to inter-
actions with the air-water interface. The airwave amplitude will be
governed by attenuation of the electromagnetic signal propagating
in the water column from the source close to the seafloor, up to the
air-water interface, and back down to the receiver on the seafloor.
We also need to take into account multiple reflections at the air-
water and seabed interfaces.
The background model contribution due to the airwave and the

response due to a resistive anomaly increase when the water depth is
reduced. The increase in the amplitude of the scattered field from a
buried resistor when the water depth is reduced is demonstrated in
Mittet (2008). This effect does, to a large degree, compensate for the
growth in the background model airwave amplitude with reduced
water depth, and it makes frequency domain marine CSEM also
feasible in very shallow water, that is, down to 40 m or even less.
We will derive an analytic expression that explains how the scat-

tered field amplitude is influenced by the model parameters. Spe-
cifically, our calculation reveals that the scattered field amplification
with decreased water depth is determined only by propagation ef-
fects in the background model. The relative scattered field ampli-
fication for different water depths d1 and d2, ΔE

d1
x ∕ΔEd2

x , is thus
independent of the target thickness and resistivity within the validity
of the approximations. This ratio is determined only by the back-
ground models and the target burial depth. The analytic expression
for the response further allows a phenomenological understanding
of shallow-water interaction effects that we explore.

THEORY

In this section, we will first discuss the relative magnitude of the
airwave and the scattered fields as a function of water depth. We

then study the response analytically. The reason to derive the ana-
lytic expression is to expose the physics and phenomenology of the
airwave and the interaction that enhances scattered fields in shallow
water; i.e., the numerical solution of the forward modeling problem
for the simple geometry studied is not the main point. Modeling
codes that can tackle arbitrary 3D geometries exist and are more
relevant in context of the numerical modeling problem.
For the rest of the paper, we will work with the model shown in

Figure 3. The air conductivity is set to zero. The water conductivity
is 3.2 S∕m, the formation conductivity is 0.5 S∕m, and the resistor
conductivity is 0.01 S∕m. The water depth is varied, and for the
examples shown here, we will use water depths of 40, 100, 300,
and 2000 m. The distance from the seabed to the top of the resistor

Figure 2. CSEM thin resistive layer sensitivity as a function of
source-receiver offset. Sensitivity is measured as the magnitude
of data difference to measurement uncertainty, defined in equation 2.
The different curves show the sensitivity at different water depths.
The frequency is 0.25 Hz, and the resistivity model is shown in
Figure 3.

Figure 3. The model used for the analysis of the response from a
thin resistive layer embedded in a conductive background medium.
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is 1000 m, and the resistor is 50 m thick. The receiver is posi-
tioned at the seabed, and the transmitter has an elevation above
the seabed of 30 m for all examples. The color coding for the curves
in all figures will be the same: green for 40-m water depth, blue
for 100-m water depth, red for 300-m water depth, and black for
2000-m water depth.
We have already discussed how the background field amplitude

increases when the water depth is decreased in relation to Figure 1.
Let us now consider the scattered field from a buried resistor. The
effect pointed to in Mittet (2008) that the increase in background
signal amplitude with reduced water depth is accompanied with
a corresponding increase in buried resistor scattered field, is shown
in Figure 4. The curves show the absolute value of the inline electric
difference field jΔExðrrjrsÞj, defined in equation 1. The frequency
is 0.25 Hz. The figure shows that the amplitude of the scattered
field is much larger in the shallow-water cases (40 and 100 m) com-
pared to the intermediate water depth case of 300 m and the deep-
water case of 2000 m. For the 40-m water depth case, we observe
that the scattered field is one order of magnitude larger than for
the corresponding deep-water case. The effects observed here are
not specific to a particular resistor burial depth. Furthermore, the
demonstrated increase of the scattered field is also typical for other
frequencies or subsurface resistivities that are commonly encoun-
tered in marine CSEM surveys. The one order of magnitude in-
crease of the scattered field in shallow water is comparable to
the amplitude increase of the background field discussed in relation
to Figure 1 in the “Introduction.”
We have now established quantitatively how much the airwave

and scattered field amplitudes increase with decreasing water depth.
That the scattered field also increases is important for the feasibility
of CSEM in shallow water. To further understand the relative im-
portance of the airwave and the scattered field as a function of water
depth, we will now consider an analytic expression for the response
from a thin resistive layer in a plane-layer model, Figure 3. The

angular frequency argument ω is implicit in the following. We seek
an expression for the inline electric field at the receiver position.
This can be obtained from the electric Green’s function, which is
defined by the relation ExðrrjrsÞ ¼ GEJ

xx ðrrjrsÞpx, where p ¼ pxx̂ is
the dipole moment and x̂ is a unit vector in the x-direction. In the
following, we consider normalized data equivalent to a unit source
px ¼ 1 Am. Thus, the numerical value of the electric field
Ex and the Green’s function component Gxx will coincide in mag-
nitude, but have different units. The EJ superscript indicates that we
consider an electric field due to an electric dipole source. The super-
script HJ will be used to indicate a magnetic field due to an electric
dipole source. The ij subscript indicate transmitting in the j direc-
tion and recording in the i direction. The Green’s function is deter-
mined by frequency domain integral equations of the Lippmann-
Schwinger type for the electric and magnetic Green’s functions
(Ward and Hohmann, 1987):

GEJ
kj ðrrjrsÞ ¼ GBEJ

kj ðrrjrsÞ

þ
Z
Vr

drGBEJ

kl ðrrjrÞΔσliðrÞGEJ
ij ðrjrsÞ: (6)

In this equation, the background electric Green’s function
components GBEJ

ij will be evaluated from reflection series computa-
tions in the Fourier spatial wavenumber domain. The background
here corresponds to the model without the anomalous resistive
layer. The conductivity difference in the anomalous domain Vr

is ΔσnmðrÞ ¼ σrnmðrÞ − σfnmðrÞ, where the superscript r is for the
resistor and the superscript f is for the formation. The electric
Green’s tensor GEJ

ij ðrjrsÞ in the resistive anomalous domain
(r ∈ Vr) will be determined by an equation analogous to equation 6,
where the arbitrary coordinate rr is evaluated inside the anomalous
resistive region.
Equation 6 is an integral equation in the space-frequency domain.

Numerical solutions of these types of equations are discussed in
Hohmann (1975), Weidelt (1975), and Zhdanov et al. (2006). Here
we will make some simplifying assumptions to arrive at an analytic
expression for this Green’s function in the frequency-wavenumber
domain. The derivation of expressions for background and anom-
alous domain Green’s functions are in Appendix A. When these
Green’s functions are known, equation 6 becomes a straightforward
integral over known fields, which is also discussed in Appendix A.
Our main assumptions will be that the horizontal electric field com-
ponent is negligible with respect to the vertical component inside
the anomalous domain Vr (Brown et al., 2012). This assumption
can be easily verified by full waveform modeling (Figure A-1 in
Appendix A), and it is caused by the discontinuity of the vertical
electric field as the conductivity changes from σf to σr. Moreover,
the conductivity in the 1D model is assumed isotropic. Anisotropy
can change the shallow-water amplitude-gain effect, but not by
much compared to what is observed in Figure 4 for typical back-
grounds.
Our calculations will be presented in the wavenumber-frequency

domain, which is related to the space-frequency domain by the
inverse Fourier transform

fðrh; zÞ ¼
1

ð2πÞ2
Z

∞

−∞
dkhfðkh; zÞeikh ·rh ; (7)Figure 4. Absolute value of scattered fields calculated with a full

waveform plane layer modeling scheme.
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where the horizontal wavevector is kh ¼ ðkx; kyÞ and the horizontal
coordinate vector is rh ¼ ðx; yÞ, where, e.g., x ¼ xr − xs. The
plotted results have been numerically transformed to the space-
frequency domain.
The resulting expression for the recorded field at the receiver is

derived in Appendix A (equation A-31) and can be expressed as

GEJ
xx ðkh; zrjzsÞ ¼ GBEJ

xx ðkh; zrjzsÞ þ ΔGEJ
xx ðkh; zrjzsÞ: (8)

This expression shows how the response can be represented as two
separate contributions. The term GBEJ

xx is independent of the resistor,
and it describes the background response due to direct propagation
as well as scattered and refracted signal associated with the air and
formation. This contribution will include transverse electric (TE)
and transverse magnetic (TM) components. The TE component
is characterized by a vanishing vertical electrical field amplitude
Ez (Ward and Hohmann, 1987). Such components do not generate
a thin resistor response because that process requires that Ez ≠ 0 at
the resistor depth. However, at the long source-receiver offset, the
TE component will dominate. This is because the TE mode can
propagate with little attenuation and at high velocity through air
(Løseth, 2011). The scattered field from the resistive anomaly is
contained in ΔGEJ

xx ,

ΔGEJ
xx ðkh; zrjzsÞ
¼ GBEJ

xz ðkh; zrjz1Þ
η

1 − ηFfEJ
zz ðkhÞ

GBEJ

zx ðkh; z1jzsÞ: (9)

The background Green’s functionsGBEJ

xx ,GBEJ

xz , andGBEJ

zx that appear
in equations 8 and 9 are given in Appendix A. The middle factor on
the right hand side of equation 9 provides a coupling to the resistor.
We defined η ¼ ΔzΔσσf∕σr, where Δz ¼ z2 − z1 is the resistor
thickness and

FfEJ
zz ðkhÞ ¼

1

σf

�
k2h

−2ikfz

�
: (10)

The wave-vector components are related by kfz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ω − k2h

p
, where

k2ω ¼ iμσfω and μ denotes the magnetic permeability.
Equation 9 is the desired analytic expression for the buried re-

sistor response. When we compare ΔGEJ
xx to the expression for

GBEJ

xx , we can determine the relative amplitude increase in resistor
response and background response from reducing the water depth.
The background Green’s function GBEJ

xx depends on the water depth
and conductivities of the water and formation. The scattered field
ΔGEJ

xx additionally depends on the conductivity of the resistor and
the distance from the seabed to the top resistor, as well as the re-
sistor thickness. Equation 9 is an approximation for the full wave-
form expression given in equation 1.
We observe that if there is a gain in amplitude of the scattered

field as the water depth decreases, then this effect must come from
changes in GBEJ

zx and GBEJ

xz . In equation 9, the middle factor giving
the scattering amplitude is independent of the water depth. Only the
Green’s functions for downward (GBEJ

zx ) and upward (GBEJ

xz ) propa-
gation depend on water depth.
Our interpretation of the increase in the scattered field response,

in light of equation 9, is that the radiation pattern from an electric
dipole is altered in shallow water in such a way that the vertical
electric field in the formation is substantially increased. This in-

creased vertical field (GEJ
zx ) couples to the resistor and creates

the partially guided field. By reciprocity there will be a similar effect
on the electromagnetic field propagating from the resistor to the
receiver. Because the coupling to the resistor is via Green’s func-
tions with a nonzero vertical electrical field component (GBEJ

xz and
GBEJ

zx ), this can be considered as a TM mode (Ward and Hohmann,
1987). The coupling to the resistor via nonzero vertical electric field
components then identifies the airwave TM component as the cause
for the shallow-water increased scattered field.
The TM mode of the airwave that is shown to interact in equa-

tion 9 can, due to the dependence on the reflection coefficients, be
interpreted as raylike reflections at the air-water interface (Løseth,
2011) in combination with coupling to the thin resistor. Although
the TE mode of the airwave does not contribute to the scattered
field, it will have a dominant effect on far-offset data as mentioned
above. These behaviors can also be demonstrated from the offset
dependence of the gradient of the Green’s function phase, which
is related to propagation velocity. The phase curve for GBEJ

xx will
have a small gradient for intermediate and large source receiver off-
sets in shallow water. This is an indication of a very high propaga-
tion velocity, and it is due to the fact that a dominant contribution to
the signal propagates through air. In the same offset range, the phase
curve for GBEJ

zx has a steep gradient. This indicates a relatively low
propagation velocity, i.e., contrary to what we see for GBEJ

xx . Our
interpretation is that propagation in the air layer is a negligible
or nonexisting effect for GBEJ

zx .

Figure 5. Schematic shallow-water CSEM signal propagation for
the two terms contributing in equation 8. Thick arrows represent
propagation by multiple reflections (between air-water and
water-formation interfaces, or internally in the resistor), and thin
arrows represent propagation also present in deep water. (a) The
main airwave background contribution to GBEJ

xx is governed by pro-
pagation along the air-water interface, and it constitutes a TE mode.
An additional contribution is due to propagation along the water-
formation interface. (b) The scattered field ΔGEJ

xx is enhanced by
signals arising due to interactions with the air-water interface.
The Green’s functions in equation 9, GBEJ

zx and GBEJ

zx , correspond
to downgoing and upgoing propagation, with interaction and pro-
pagation at the resistor described by Vzz ¼ η∕ð1 − ηFfEJ

zz Þ.
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The phenomenology of the terms contributing in equation 8
are conceptually illustrated in Figure 5. The main contribution to
GBEJ

xx from the airwave is characterized by propagation along the
air-water interface, and it does not couple to the resistor because
it is TE (Figure 5a). Interactions at the air-water interface also gen-
erate an enhanced downgoing propagation at a small distance from
the source, which can couple to the resistor because it is TM
(Ez ≠ 0). There is a similar enhancement of the signal at the receiver
location.
The scattered field in equation 9 can be simplified if the water

layer is assumed to be sufficiently thick:

ΔGEJ
xx ðkh; zrjzsÞ ¼ −

1

4

ΔρΔzk2x�
1þ i ΔρΔz

ρf
k2h
2kfz

�

× ðtfwTMÞ2eik
f
z ðz1−zrÞeik

f
z ðz1−zwÞeikwz ðzw−zsÞ:

(11)

The resistivity difference is Δρ ¼ ρr − ρf , where ρr and ρf are the
resistor and formation resistivities, respectively. Equation 11 de-
monstrates that the response from the thin resistive layer has the
property that the amplitude depends on the product, ΔρΔz. This
is in agreement with the transverse resistance equivalence dis-
cussed, e.g., by Constable and Weiss (2006) for ρr ≫ ρf.

RESULTS

In this section, we will explore the predictions and the phenom-
enology inferred from the analytic results by numerical examples,
where we use the full waveform modeling code.

Our result for the scattered field response, equation 9, is factor-
ized such that the interaction with the resistive layer is contained in
a single factor. This factor is independent of water depth. The back-
ground Green’s functions that describe upward and downward pro-
pagation, on the other hand, depend on water depth but not on
properties of the resistive layer. The factorization in equation 9 thus
implies that the water depth dependence of the sensitivity defined
by equation 2 depends on the resistive layer properties only as an
overall scaling factor.
The absolute value of the downgoing field at resistor depth GBEJ

zx

is shown in Figure 6, and Figure 7 shows the same data normalized
to the deep-water case. As we observe, the vertical field at the re-
sistor depth is increased with a factor of up to four for the shallow-
water case compared with the deep-water case. The increase is lar-
gest at small horizontal distances from the source. Thus, the most
important contribution to the coupling of the source field with the
thin resistor is at short horizontal distances. We will investigate this
in more detail below. The increase in the vertical electric field will
result in a larger guided field in the resistor through the middle fac-
tor in equation 9 that represents propagation in the resistive layer.
Note that horizontal propagation between source and receiver will
be dominated by this factor and not the distance-dependence of
GBEJ

zx shown in Figure 6. However, Figure 7 explains only part
of the effect because we also need to consider the upgoing field
GBEJ

xz in equation 9. There will be a similar amplification with a fac-
tor of four for this propagation as the water depth is decreased.
Equation 9 will be a double convolution in the space domain ac-
cording to the transformation in equation 7. Decreasing the water
depth from our deep-water case to the shallow-water case, the scat-
tered field may thus be amplified by a factor that is up to 16, and this
is consistent with what we observe in Figure 4.

Figure 6. Vertical electric field magnitude from a horizontal electric
dipole at the top of the resistor jGBEJ

zx ðrh; z1jrsÞj. Note that the
horizontal axis shows the lateral displacement from the source,
and not the source-receiver offset. The field magnitude is plotted
for the different water depths considered in the main text.

Figure 7. Vertical electric field magnitude from a horizontal electric
dipole at the top of the resistor, normalized to the deep-water case.
See also Figure 6. For short displacements from the source, the
increase in field strength from deep to shallow water is up to four
times.
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To analyze the sensitivity, the amplification of the background
field GBEJ

xx must be considered together with the amplification of
the scattered field ΔGEJ

xx . As described by equations 2 and 4, back-
ground field contributions affect sensitivity because there are con-
tributions to the uncertainty that scale with the total field amplitude.
We expect the TE mode of the airwave to give an important back-
ground field contribution because it does not couple to the resistor

and can propagate with reduced attenuation in air (Løseth, 2011).
This contribution is contained in the background field term in equa-
tion 8, GBEJ

xx . In Figure 8, we plot the background field together with
the scattered field ΔGEJ

xx . The solid lines are for GBEJ

xx , and the
dashed lines are for ΔGEJ

xx . There is an increase in the airwave am-
plitude as the water depth is reduced, but there is also a correspond-
ing increase in the scattered field. The real data shown in Figure 1
show how the electric field amplitude increases from deep to shal-
low water, and they are in quantitative agreement with Figure 8. For
offsets 1 to 5 km, the amplitude increases by about one order of
magnitude. This is offset by the up to 16 times enhancement of
the scattered field due to the combined effects from GBEJ

zx and
GBEJ

xz (see Figure 7) contributing in equation 9. At a longer offset,
the increase of background field GBEJ

xx dominates and the effect of
the airwave can be very large (two orders of magnitude in Figure 1).
The total effect on sensitivity upon reducing water depth is therefore
nontrivial to assess because it will be enhanced for short offsets and
decreased at far offsets. We attribute this behavior to the different
offset characteristics of the interactions at the air-water interface for
the TE modes contained in the background field GBEJ

xx (propagation
along the sea surface) and the TMmode (ray-reflected) contributing
to the scattered field ΔGEJ

xx .
To better define the asymptotic behavior of the airwave and scat-

tered field magnitude, we have in Figure 9 computed the fields for
more water depths than shown previously. This plot addresses the
dynamics of field amplitude for the water depth interval considered,
and it establishes the depth scale where asymptotic behavior is
reached.
Let us consider the effect on background field GBEJ

xx and scattered
field ΔGBEJ

xx upon reducing the water depth from deep water
(2000 m) to very shallow water. The background field has an
asymptotic amplitude level for water depths larger than 750 m,
and at 500 m; that field contribution has increased significantly.
The scattered field amplitude is almost constant for water depths

Figure 8. Results of full waveform modeling. Background field
contributions as solid lines, and scattered fields as dashed lines.

Figure 9. Results of full waveform modeling. Background field and
scattered field for many water depths: 2000 m (black), 1500 m
(purple), 1000 m (gray), 750 m (yellow), 500 m (brown), 300 m
(red), 100 m (blue), 40 m (green), and 1 m (cyan).

Figure 10. Sensitivity for the range of water depths considered in
Figure 9 calculated according to equation 2.
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500 m and greater. For shallower water, the scattered field increase
discussed in this paper will be important. The resulting sensitivity
effect is demonstrated by Figure 10, which considers the scattered
field to the data uncertainty according to equation 2 for the same
water depths. Decreasing the water depth from 1500 m, there is an
associated decrease in sensitivity until 500 m. Then, the increased
scattered field response causes the sensitivity to reach a con-
stant level.
Figures 9 and 10 also allow us to consider the limiting case of

very shallow water (1 m). Also in this case, the source and receivers
were positioned in the water layer. As expected, the sensitivity is
similar to that of the 500-m water depth. However, the field ampli-
tudes for the background and scattered field vary considerable even
between the 40- and 1-m water depth. The constant level for sen-
sitivity is caused by the corresponding increases of scattered field
and background field shown by Figure 9.

CONCLUSIONS

The amplitude of the airwave due to a horizontal electric dipole
becomes larger as the water depth is reduced. There is a similar
increase in the amplitude of the scattered field from a thin resistor
that makes marine CSEM surveys in shallow water feasible. We
obtained an approximate but accurate expression for the total field
in a shallow-water resistivity model, which includes a thin resistor.
This expression determines how the two terms that describe the
background field and the scattered field from the thin resistor de-
pend on water depth. The contribution that contain the scattered
field is purely TM. The TE mode of the airwave signal, on the other
hand, does not couple to the resistive layer and will dominate the
background field.
When we analyze the implications for sensitivity of marine CSEM

data, we find that the sensitivity is best in deep water, as expected.
However, there are only minor differences for data acquired in inter-
mediate water depths of 300 m and shallow water of 40 m.
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APPENDIX A

DERIVATION OF THE THIN RESISTOR RESPONSE

In this appendix, we derive the analytic expression in equation 9,
which gives the scattered field from a resistive anomaly. Our start-
ing point is the Lippmann-Schwinger-type equation for the electric
and magnetic Green’s functions

GEJ
kj ðrrjrsÞ ¼ GBEJ

kj ðrrjrsÞ

þ
Z
Vr

drGBEJ

kl ðrrjrÞΔσliðrÞGEJ
ij ðrjrsÞ; (A-1)

where the Green’s function inside the anomalous domain is
given by

GEJ
ij ðrjrsÞ ¼ GBEJ

ij ðrjrsÞ

þ
Z
Vr

dr 0GBEJ

in ðrjr 0ÞΔσnmðr 0ÞGEJ
mjðr 0jrsÞ: (A-2)

We seek a simplified expression for the response from a thin re-
sistive layer. The conductivity is assumed isotropic, Δσnm = Δσδnm.
Anisotropy can change the shallow-water amplitude-gain effect, but
not by much compared to what is observed in Figure 4. The electric
field due to a horizontal electric dipole transmitter is dominantly
vertical within a thin resistive layer. This can easily be verified
by full waveform modeling. The physical explanation is that the
vertical current must be continuous over the thin resistive layer. This
can only happen if the vertical electric field in the thin layer in-
creases discontinuously to counteract the drop in conductivity.
The horizontal electric fields are continuous over the same bound-
aries. We can therefore neglect the contribution due to the horizontal
field inside the thin resistive layer. The small parameter involved in
this approximation is the ratio of the conductivity of the resistive
layer to the conductivity of the formation, σr∕σf. Hence, equa-
tion A-2 becomes

GEJ
zx ðrjrsÞ ¼ GBEJ

zx ðrjrsÞ

þ
Z

dr 0GBEJ

zz ðrjr 0ÞΔσðr 0ÞGEJ
zx ðr 0jrsÞ; (A-3)

and for equation A-1 we have

GEJ
xx ðrrjrsÞ ¼ GBEJ

xx ðrrjrsÞ

þ
Z

drGBEJ

xz ðrrjrÞΔσðrÞGEJ
zx ðrjrsÞ: (A-4)

The derivations to follow are performed in the wavenumber-
frequency domain, whereas the plotted results in this paper are
displayed in the space-frequency domain. We use ðr; tÞ ¼
ðrh; z; tÞ ¼ ðx; y; z; tÞ for space and time coordinates and ðk;ωÞ ¼
ðkh; kz;ωÞ ¼ ðkx; ky; kz;ωÞ for wavenumber-frequency coordi-
nates. The square of the horizontal wavenumber is given by
k2h ¼ k2x þ k2y. The vertical wavenumber kz cannot vary freely if
the horizontal wavenumbers are allowed to do so. The vertical
wavenumber in terms of horizontal wavenumbers and medium
parameters will be given below. The following Fourier transform
pairs are used:

fðkh; z;ωÞ ¼
Z

∞

−∞
drh

Z
∞

−∞
dtfðrh; z; tÞe−iðkhrh−ωtÞ;

fðrh; z; tÞ ¼
1

ð2πÞ3
Z

∞

−∞
dkh

Z
∞

−∞
dωfðkh; z;ωÞeiðkhrh−ωtÞ:

(A-5)

Let ϵ0 be the electric permittivity of the vacuum with ϵ being the
relative permittivity. The conductivity is σ. The complex electric
permittivity is then

~ϵ ¼ ϵϵ0 þ i
σ

ω
: (A-6)

With μ the magnetic permeability, the complex wavenumber is
determined by
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k2ω ¼ μ~ϵω2; (A-7)

or, when displacement currents can be neglected,

k2ω ≈ iμσω: (A-8)

By convention, we use the positive sign of the vertical wavenumber
in the following. Hence, the vertical wavenumber is

kz ¼ kzðkhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ω − k2h

q
: (A-9)

The reflection coefficient for one plane wave component is different
for the two cases of the electric field being normal to the plane of
incidence (TE mode) and the magnetic field being normal to the plane
of incidence (TM mode). The reflection coefficients for the horizontal
electric field in these two cases can be found from the boundary con-
ditions and are (Stratton, 1941; Kong, 2000; Løseth, 2011)

rabTE ¼ kaz − kbz
kaz þ kbz

; r abTM ¼ ~ϵakbz − ~ϵbkaz
~ϵakbz þ ~ϵbkaz

; (A-10)

where the superscript a relates to the medium parameters on the side
of the interface where we find the incoming and reflected fields and
superscript b relates to the medium parameters on the side the inter-
face where we find the transmitted field. The magnetic permeability is
assumed constant. As mentioned previously, we use the positive sign
of kz in the coefficients. Seen from the opposite side of the boundary,
the reflection coefficients change sign; that is, rba ¼ −rab. The cor-
responding transmission coefficients are

tabTE ¼ 2kaz
kaz þ kbz

; tabTM ¼ 2~ϵakbz
~ϵakbz þ ~ϵbkaz

: (A-11)

This specifies the problem to compute the background electromag-
netic fields GBEJ

zz and GBEJ

xz required in equations A-3 and A-4. We
will first consider this computation, and then we derive the Green’s
function in the model with a thin resistive layer.
The Green’s function for an electrical dipole in a uniform whole

space can be found, e.g., in Ward and Hohmann (1987). The whole-
space conductivity is here denoted σa and can be σw, σf , or σr for
seawater, formation, or resistor, respectively (see Figure 3). The
wavenumber-frequency domain expression can be written as

G0;aEJ
ij ðkh; zjz 0Þ ¼ FaEJ

ij ðkhÞeikaz jz−z 0 j;
G0;aHJ

ij ðkh; zjz 0Þ ¼ FaHJ

ij ðkhÞeikaz jz−z 0 j; (A-12)

where

FaEJ ðkhÞ ¼
1

σa

2
64 ka

2

ω − k2x −kxky �kxkaz
−kxky ka

2

ω − k2y �kykaz
�kxkaz �kykaz ka

2

ω − ka
2

z

3
75 1

−2ikaz
;

(A-13)

and

FaHJðkhÞ ¼
2
4 0 ∓ikaz iky
�ikaz 0 −ikx
−iky ikx 0

3
5 1

−2ikaz
: (A-14)

In equation A-12, we have for convenience split off the phase fac-
tors from the whole-space electric and magnetic Green’s tensors.
The relation between the required components of the background
Green’s tensor GBEJ

and the corresponding components of the
whole-space Green’s tensor G0;aEJ will be derived below.
We are now ready to write equation A-3 in the wavenumber-

frequency domain,

GEJ
zx ðkh; zjzsÞ ¼ GBEJ

zx ðkh; zjzsÞ

þ
Z

z2

z1

dz 0GBEJ

zz ðkh; zjz 0ÞΔσðz 0ÞGEJ
zx ðkh; z 0jzsÞ;

(A-15)

and likewise for equation A-4,

GEJ
xx ðkh; zrjzsÞ ¼ GBEJ

xx ðkh; zrjzsÞ

þ
Z

z2

z1

dzGBEJ

xz ðkh; zrjzÞΔσðzÞGEJ
zx ðkh; zjzsÞ:

(A-16)

Equation A-15 is ambiguous. The background fields in the anom-
alous domain GBEJ

zx and GBEJ

zz are not consistently defined yet. The
problem relates to the fact that the vertical electric field is discon-
tinuous over the boundary to the anomalous domain. However, the
horizontal magnetic fields are continuous over the z1 and z2 bound-
aries. For the magnetic fields, we have

GHJ
xx ðkh; zjzsÞ ¼ GBHJ

xx ðkh; zjzsÞ

þ
Z

z2

z1

dz 0GBHJ

xz ðzjz 0ÞΔσðz 0ÞGEJ
zx ðkh; z 0jzsÞ;

GHJ
yx ðkh; zjzsÞ ¼ GBHJ

yx ðkh; zjzsÞ

þ
Z

z2

z1

dz 0GBHJ

yz ðzjz 0ÞΔσðz 0ÞGEJ
zx ðkh; z 0jzsÞ:

(A-17)

The relation between the electric and magnetic tensor compo-
nents is governed by Ampere’s law, which for the relevant compo-
nent in the wavenumber domain is

σðzÞGEJ
zn ðkh; zjzsÞ ¼ ikxGHJ

yn ðkh; zjzsÞ − ikyGHJ
xn ðkh; zjzsÞ:

(A-18)

Equation A-18 is valid for the anomalous domain. The conductivity
here is denoted σr, and it is assumed constant from z1 to z2. This
gives
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GEJ
zx ðkh; zjzsÞ ¼

1

σr
ðikxGBHJ

yx ðkh; zjzsÞ − ikyGBHJ

xx ðkh; zjzsÞÞ

þ
Z

z2

z1

dz 0
1

σr
ðikxGBHJ

yz ðkh; zjzsÞ

− ikyGBHJ

xz ðkh; zjzsÞÞΔσðz 0ÞGEJ
zx ðkh; z 0jzsÞ:

(A-19)

We leave this equation as is for the moment because it is necessary
to determine the background Green’s tensor components as a func-
tion of the whole-space Green’s tensor components to proceed.
The background Green’s functions for the model shown in

Figure 3 all have a similar form. They consist of a whole-space so-
lution multiplied by a reflection series with appropriate phase fac-
tors to describe the multiple scattering events in the water layer
(Nordskag and Amundsen, 2007; Andréis and MacGregor,
2008). The derivation of the Green’s function GBEJ

xz ðkh; zrjzÞ, re-
quired by equation A-16, may serve as an example. The coordinate
z is assumed to be at some depth in the formation below the seabed,
and the coordinate zr is assumed to be somewhere in the water layer,
not necessarily at the seabed. The background Green’s function is
then

GBEJ

xz ðkh; zrjzÞ ¼ G0;fEJ
xz ðkh; zwjzÞtfwTM

feikwz ðzw−zrÞ
þ rwaTMe

ikwz ðzwþzrÞ

þ rwaTMr
wf
TMe

ikwz ðzw−zrÞei2kwz zw

þ · · · · · · · · · · · · g; (A-20)

where the common factor accounts for the propagation from depth z
to the seabed and transmission from the formation to the water layer.
Superscript f is for the formation, and superscript w is for the water
layer. The sum is a geometric series, and the result is

GBEJ

xz ðkh; zrjzÞ

¼ G0;fEJ
xz ðkh; zwjzÞtfwTM

(
eik

w
z ðzw−zrÞ þ rwaTMe

ikwz ðzwþzrÞ

1 − rwaTMr
wf
TMe

2ikwz zw

)
:

(A-21)

Note that the above Green’s function depends on the inverse of the
formation conductivity σf because the whole-space Green’s func-
tion has this dependence. Equation A-21 can also be used for the
Green’s function GBEJ

zx ðkh; zjzsÞ, required by equation A-15. Reci-
procity dictates that

GBEJ

zx ðkh; zjzsÞ ¼ GBEJ

xz ð−kh; zsjzÞ; (A-22)

where the right-hand side is given by equation A-21 if zs is sub-
stituted for zr. For the remaining part of the paper, we assume that
the receiver is at the seabed.
The derivation for GBEJ

xx is along the same lines as above, except
that this Green’s function component must be split in its TE and TM
modes, GBEJ

xxTE and G
BEJ

xxTM . To achieve this, we first need to decompose

the amplitudes of the whole-space Green’s function in the water layer
FwEJ

xx in the TE and TM modes (Ward and Hohmann, 1987)

FwEJ

xxTE ¼ 1

σw
k2ykw

2

ω

k2h

�
1

−2ikwz

�
;

FwEJ

xxTM ¼ 1

σw
k2xkw

2

z

k2h

�
1

−2ikwz

�
: (A-23)

These amplitudes must be multiplied by the appropriate phase fac-
tors, as in equation A-12, to obtain the corresponding whole-space
Green’s functions G0;wEJ

xxTE and G0;wEJ

xxTM .
We obtain

GBEJ

xxTEðkh; zrjzsÞ ¼ G0;wEJ

xxTE ðkh; zrjzsÞð1þ rwfTEÞ
1þ e2ik

w
z zs

1 − rwaTEr
wf
TEe

2ikwz zw
;

GBEJ

xxTM ðkh; zrjzsÞ ¼ G0;wEJ

xxTM ðkh; zrjzsÞð1þ rwfTMÞ
1þ e2ik

w
z zs

1 − rwaTMr
wf
TMe

2ikwz zw
;

(A-24)

and

GBEJ

xx ðkh; zrjzsÞ ¼ GBEJ

xxTEðkh; zrjzsÞ þ GBEJ

xxTMðkh; zrjzsÞ:
(A-25)

We can now return to equation A-19. We use equations A-13 and
A-14 to obtain an expression that contains only electric Green’s
functions:

GEJ
zx ðkh; zjzsÞ ¼

σf

σr
GBEJ

zx ðkh; zjzsÞ

þ σf

σr

Z
z2

z1

dz 0GBEJ

zz ðkh; zjz 0ÞΔσðz 0ÞGEJ
zx ðkh; z 0jzsÞ:

(A-26)

The next two simplifying assumptions are that the electric
fields in the anomalous domain GBEJ

zx and GBEJ

zz are approximated
as constant as a function of depth from z1 to z2. TheGBEJ

zx is assumed
slowly varying because the distance from the source depth is fairly
large and the resistive layer is thin. The GBEJ

zz can be assumed con-
stant because the magnetic fields are continuous over the thin layer
and cannot have any jumps over this short depth interval. These
approximations require that the thickness of the resistive layer is
much smaller than the wavelength of the induced field. With

ξ ¼ σf

σr
; (A-27)

we obtain for the anomalous domain,

GEJ
zx ðkh; z1jzsÞ ¼ ξGBEJ

zx ðkh; z1jzsÞ
þ ξΔσΔFfEJ

zz ðkhÞGEJ
zx ðkh; z1jzsÞ: (A-28)

This is now an algebraic equation for the field in the anomalous
domain with the solution,
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GEJ
zx ðkh; z1jzsÞ ¼

ξ

1 − ξΔσΔzFfEJ
zz ðkhÞ

GBEJ

zx ðkh; z1jzsÞ;

(A-29)

where

FfEJ
zz ðkhÞ ¼

1

σf

�
k2h

−2ikfz

�
; (A-30)

and where we have used Δσ ¼ σr − σf and Δz ¼ z2 − z1. We
introduce η ¼ ξΔσΔz, and we obtain for the recorded field at the
receiver,

GEJ
xx ðkh; zrjzsÞ ¼ GBEJ

xx ðkh; zrjzsÞ þ GBEJ

xz ðkh; zrjz1Þ
×

η

1 − ηFfEJ
zz ðkhÞ

GBEJ

zx ðkh; z1jzsÞ

¼ GBEJ

xx ðkh; zrjzsÞ þ ΔGEJ
xx ðkh; zrjzsÞ: (A-31)

The term GBEJ

xx captures TE and TM modes of the background air-
wave signal, whereas GBEJ

xz and GBEJ

zx are pure TM modes. The scat-
tered field from the resistive anomaly is contained in ΔGEJ

xx :

ΔGEJ
xx ðkh; zrjzsÞ
¼ GBEJ

xz ðkh; zrjz1Þ
η

1 − ηFfEJ
zz ðkhÞ

GBEJ

zx ðkh; z1jzsÞ: (A-32)

Figure A-1 shows the full waveform modeling result from
Figure 4 and also the results from equation A-32 for the model

in Figure 3. In Figure A-1, the wavenumber-frequency domain
result in equation A-32 has been transformed numerically to the
space-frequency domain. The fit is sufficiently good for the discus-
sion in this paper, for all water depths. This means that the approx-
imations used to reach the expression for the scattered field in
equation A-32 are valid.
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